lattice-benchmarks/Grid/Benchmark_dwf_fp32.cpp

513 lines
17 KiB
C++
Raw Permalink Normal View History

2023-01-13 19:00:20 +00:00
/*
Copyright © 2015 Peter Boyle <paboyle@ph.ed.ac.uk>
Copyright © 2022 Antonin Portelli <antonin.portelli@me.com>
Copyright © 2023 Simon Bürger <simon.buerger@rwth-aachen.de>
2023-01-13 19:00:20 +00:00
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "json.hpp"
2023-01-13 19:00:20 +00:00
#include <Grid/Grid.h>
#ifdef GRID_CUDA
#define CUDA_PROFILE
#endif
#ifdef CUDA_PROFILE
#include <cuda_profiler_api.h>
#endif
using namespace std;
using namespace Grid;
2023-01-25 17:45:30 +00:00
template <class d> struct scal
2023-01-13 19:00:20 +00:00
{
d internal;
};
Gamma::Algebra Gmu[] = {Gamma::Algebra::GammaX, Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT};
2023-01-13 19:00:20 +00:00
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
Coordinate latt4 = GridDefaultLatt();
int Ls = 16;
std::string json_filename = ""; // empty indicates no json output
nlohmann::json json;
// benchmark specific command line arguments
2023-01-13 19:00:20 +00:00
for (int i = 0; i < argc; i++)
{
2023-01-13 19:00:20 +00:00
if (std::string(argv[i]) == "-Ls")
{
std::stringstream ss(argv[i + 1]);
ss >> Ls;
}
if (std::string(argv[i]) == "--json-out")
json_filename = argv[i + 1];
}
2023-01-13 19:00:20 +00:00
GridLogLayout();
long unsigned int single_site_flops = 8 * Nc * (7 + 16 * Nc);
json["single_site_flops"] = single_site_flops;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(
2023-01-25 17:45:30 +00:00
GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
2023-01-13 19:00:20 +00:00
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
2023-01-13 19:00:20 +00:00
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
json["grid"] = FGrid->FullDimensions().toVector();
json["local_grid"] = FGrid->LocalDimensions().toVector();
2023-01-13 19:00:20 +00:00
std::cout << GridLogMessage << "Making s innermost grids" << std::endl;
GridCartesian *sUGrid =
SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(), GridDefaultMpi());
2023-01-13 19:00:20 +00:00
GridRedBlackCartesian *sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian *sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls, UGrid);
GridRedBlackCartesian *sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid);
RNG4.SeedUniqueString(std::string("The 4D RNG"));
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid);
RNG5.SeedUniqueString(std::string("The 5D RNG"));
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermionF src(FGrid);
random(RNG5, src);
#if 0
src = Zero();
{
Coordinate origin({0,0,0,latt4[2]-1,0});
SpinColourVectorF tmp;
tmp=Zero();
tmp()(0)(0)=Complex(-2.0,0.0);
std::cout << " source site 0 " << tmp<<std::endl;
pokeSite(tmp,src,origin);
}
#else
RealD N2 = 1.0 / ::sqrt(norm2(src));
src = src * N2;
#endif
LatticeFermionF result(FGrid);
result = Zero();
LatticeFermionF ref(FGrid);
ref = Zero();
LatticeFermionF tmp(FGrid);
LatticeFermionF err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU<Nc>::HotConfiguration(RNG4, Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
#if 0
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
LatticeColourMatrixF ttmp(UGrid);
ttmp = PeekIndex<LorentzIndex>(Umu,mu);
// if (mu !=2 ) ttmp = 0;
// ttmp = ttmp* pow(10.0,mu);
PokeIndex<LorentzIndex>(Umu,ttmp,mu);
}
std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
// replicate across fifth dimension
// LatticeGaugeFieldF Umu5d(FGrid);
std::vector<LatticeColourMatrixF> U(4, UGrid);
for (int mu = 0; mu < Nd; mu++)
{
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1)
{
ref = Zero();
for (int mu = 0; mu < Nd; mu++)
{
tmp = Cshift(src, mu + 1, 1);
{
autoView(tmp_v, tmp, CpuWrite);
autoView(U_v, U[mu], CpuRead);
for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++)
{
for (int s = 0; s < Ls; s++)
{
tmp_v[Ls * ss + s] = U_v[ss] * tmp_v[Ls * ss + s];
}
}
}
ref = ref + tmp - Gamma(Gmu[mu]) * tmp;
{
autoView(tmp_v, tmp, CpuWrite);
autoView(U_v, U[mu], CpuRead);
autoView(src_v, src, CpuRead);
for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++)
{
for (int s = 0; s < Ls; s++)
{
tmp_v[Ls * ss + s] = adj(U_v[ss]) * src_v[Ls * ss + s];
}
}
}
tmp = Cshift(tmp, mu + 1, -1);
ref = ref + tmp + Gamma(Gmu[mu]) * tmp;
}
ref = -0.5 * ref;
}
RealD mass = 0.1;
RealD M5 = 1.8;
RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
json["ranks"] = NP;
json["nodes"] = NN;
std::cout << GridLogMessage
2023-01-25 17:45:30 +00:00
<< "*****************************************************************"
<< std::endl;
std::cout << GridLogMessage
<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm"
<< std::endl;
std::cout << GridLogMessage
<< "*****************************************************************"
<< std::endl;
std::cout << GridLogMessage
<< "*****************************************************************"
<< std::endl;
std::cout << GridLogMessage
<< "* Benchmarking DomainWallFermionR::Dhop " << std::endl;
std::cout << GridLogMessage << "* Vectorising space-time by " << vComplexF::Nsimd()
<< std::endl;
std::cout << GridLogMessage << "* VComplexF size is " << sizeof(vComplexF) << " B"
<< std::endl;
2023-01-13 19:00:20 +00:00
if (sizeof(RealF) == 4)
std::cout << GridLogMessage << "* SINGLE precision " << std::endl;
if (sizeof(RealF) == 8)
std::cout << GridLogMessage << "* DOUBLE precision " << std::endl;
#ifdef GRID_OMP
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl;
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
std::cout << GridLogMessage << "* Using sequential comms compute" << std::endl;
#endif
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric)
std::cout << GridLogMessage << "* Using GENERIC Nc WilsonKernels" << std::endl;
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll)
std::cout << GridLogMessage << "* Using Nc=3 WilsonKernels" << std::endl;
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm)
2023-01-13 19:00:20 +00:00
std::cout << GridLogMessage << "* Using Asm Nc=3 WilsonKernels" << std::endl;
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage
<< "*****************************************************************"
<< std::endl;
2023-01-13 19:00:20 +00:00
DomainWallFermionF Dw(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5);
int ncall = 300;
if (1)
{
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src, result, 0);
std::cout << GridLogMessage << "Called warmup" << std::endl;
double t0 = usecond();
for (int i = 0; i < ncall; i++)
{
__SSC_START;
Dw.Dhop(src, result, 0);
__SSC_STOP;
}
double t1 = usecond();
FGrid->Barrier();
double volume = Ls;
for (int mu = 0; mu < Nd; mu++)
volume = volume * latt4[mu];
double flops = single_site_flops * volume * ncall;
auto nsimd = vComplex::Nsimd();
auto simdwidth = sizeof(vComplex);
// RF: Nd Wilson * Ls, Nd gauge * Ls, Nc colors
2023-01-25 17:45:30 +00:00
double data_rf = volume * ((2 * Nd + 1) * Nd * Nc + 2 * Nd * Nc * Nc) * simdwidth /
nsimd * ncall / (1024. * 1024. * 1024.);
2023-01-13 19:00:20 +00:00
// mem: Nd Wilson * Ls, Nd gauge, Nc colors
double data_mem =
2023-01-25 17:45:30 +00:00
(volume * (2 * Nd + 1) * Nd * Nc + (volume / Ls) * 2 * Nd * Nc * Nc) * simdwidth /
nsimd * ncall / (1024. * 1024. * 1024.);
json["Dw"]["calls"] = ncall;
json["Dw"]["time"] = t1 - t0;
json["Dw"]["mflops"] = flops / (t1 - t0);
json["Dw"]["mflops_per_rank"] = flops / (t1 - t0) / NP;
json["Dw"]["mflops_per_node"] = flops / (t1 - t0) / NN;
json["Dw"]["RF"] = 1000000. * data_rf / ((t1 - t0));
json["Dw"]["mem"] = 1000000. * data_mem / ((t1 - t0));
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "Called Dw " << ncall << " times in " << t1 - t0
<< " us" << std::endl;
2023-01-13 19:00:20 +00:00
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout << GridLogMessage << "mflop/s = " << flops / (t1 - t0) << std::endl;
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "mflop/s per rank = " << flops / (t1 - t0) / NP
<< std::endl;
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "mflop/s per node = " << flops / (t1 - t0) / NN
<< std::endl;
std::cout << GridLogMessage
<< "RF GiB/s (base 2) = " << 1000000. * data_rf / ((t1 - t0))
<< std::endl;
std::cout << GridLogMessage
<< "mem GiB/s (base 2) = " << 1000000. * data_mem / ((t1 - t0))
<< std::endl;
2023-01-13 19:00:20 +00:00
err = ref - result;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
// exit(0);
if ((norm2(err) > 1.0e-4))
{
/*
std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl;
*/
std::cout << GridLogMessage << "WRONG RESULT" << std::endl;
FGrid->Barrier();
exit(-1);
}
assert(norm2(err) < 1.0e-4);
Dw.Report();
}
if (1)
{ // Naive wilson dag implementation
ref = Zero();
for (int mu = 0; mu < Nd; mu++)
{
// ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x
tmp = Cshift(src, mu + 1, 1);
{
autoView(ref_v, ref, CpuWrite);
autoView(tmp_v, tmp, CpuRead);
autoView(U_v, U[mu], CpuRead);
for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++)
{
for (int s = 0; s < Ls; s++)
{
int i = s + Ls * ss;
ref_v[i] += U_v[ss] * (tmp_v[i] + Gamma(Gmu[mu]) * tmp_v[i]);
;
}
}
}
{
autoView(tmp_v, tmp, CpuWrite);
autoView(U_v, U[mu], CpuRead);
autoView(src_v, src, CpuRead);
for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++)
{
for (int s = 0; s < Ls; s++)
{
tmp_v[Ls * ss + s] = adj(U_v[ss]) * src_v[Ls * ss + s];
}
}
}
// tmp =adj(U[mu])*src;
tmp = Cshift(tmp, mu + 1, -1);
{
autoView(ref_v, ref, CpuWrite);
autoView(tmp_v, tmp, CpuRead);
for (int i = 0; i < ref_v.size(); i++)
{
ref_v[i] += tmp_v[i] - Gamma(Gmu[mu]) * tmp_v[i];
;
}
}
}
ref = -0.5 * ref;
}
// dump=1;
Dw.Dhop(src, result, 1);
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage
<< "Compare to naive wilson implementation Dag to verify correctness"
<< std::endl;
2023-01-13 19:00:20 +00:00
std::cout << GridLogMessage << "Called DwDag" << std::endl;
std::cout << GridLogMessage << "norm dag result " << norm2(result) << std::endl;
std::cout << GridLogMessage << "norm dag ref " << norm2(ref) << std::endl;
err = ref - result;
std::cout << GridLogMessage << "norm dag diff " << norm2(err) << std::endl;
if ((norm2(err) > 1.0e-4))
{
/*
std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl;
*/
}
LatticeFermionF src_e(FrbGrid);
LatticeFermionF src_o(FrbGrid);
LatticeFermionF r_e(FrbGrid);
LatticeFermionF r_o(FrbGrid);
LatticeFermionF r_eo(FGrid);
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "Calling Deo and Doe and //assert Deo+Doe == Dunprec"
<< std::endl;
2023-01-13 19:00:20 +00:00
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
std::cout << GridLogMessage << "src_e" << norm2(src_e) << std::endl;
std::cout << GridLogMessage << "src_o" << norm2(src_o) << std::endl;
// S-direction is INNERMOST and takes no part in the parity.
std::cout << GridLogMessage
2023-01-25 17:45:30 +00:00
<< "*********************************************************" << std::endl;
std::cout << GridLogMessage
2023-01-25 17:45:30 +00:00
<< "* Benchmarking DomainWallFermionF::DhopEO " << std::endl;
std::cout << GridLogMessage << "* Vectorising space-time by " << vComplexF::Nsimd()
<< std::endl;
2023-01-13 19:00:20 +00:00
if (sizeof(RealF) == 4)
std::cout << GridLogMessage << "* SINGLE precision " << std::endl;
if (sizeof(RealF) == 8)
std::cout << GridLogMessage << "* DOUBLE precision " << std::endl;
#ifdef GRID_OMP
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl;
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
std::cout << GridLogMessage << "* Using sequential comms compute" << std::endl;
#endif
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric)
std::cout << GridLogMessage << "* Using GENERIC Nc WilsonKernels" << std::endl;
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll)
std::cout << GridLogMessage << "* Using Nc=3 WilsonKernels" << std::endl;
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm)
std::cout << GridLogMessage << "* Using Asm Nc=3 WilsonKernels" << std::endl;
std::cout << GridLogMessage
2023-01-25 17:45:30 +00:00
<< "*********************************************************" << std::endl;
2023-01-13 19:00:20 +00:00
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o, r_e, DaggerNo);
double t0 = usecond();
for (int i = 0; i < ncall; i++)
{
#ifdef CUDA_PROFILE
if (i == 10)
cudaProfilerStart();
#endif
Dw.DhopEO(src_o, r_e, DaggerNo);
#ifdef CUDA_PROFILE
if (i == 20)
cudaProfilerStop();
#endif
}
double t1 = usecond();
FGrid->Barrier();
double volume = Ls;
for (int mu = 0; mu < Nd; mu++)
volume = volume * latt4[mu];
double flops = (single_site_flops * volume * ncall) / 2.0;
json["Deo"]["calls"] = ncall;
json["Deo"]["time"] = t1 - t0;
json["Deo"]["mflops"] = flops / (t1 - t0);
json["Deo"]["mflops_per_rank"] = flops / (t1 - t0) / NP;
json["Deo"]["mflops_per_node"] = flops / (t1 - t0) / NN;
2023-01-13 19:00:20 +00:00
std::cout << GridLogMessage << "Deo mflop/s = " << flops / (t1 - t0) << std::endl;
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "Deo mflop/s per rank " << flops / (t1 - t0) / NP
<< std::endl;
2023-01-25 17:45:30 +00:00
std::cout << GridLogMessage << "Deo mflop/s per node " << flops / (t1 - t0) / NN
<< std::endl;
2023-01-13 19:00:20 +00:00
Dw.Report();
}
Dw.DhopEO(src_o, r_e, DaggerNo);
Dw.DhopOE(src_e, r_o, DaggerNo);
Dw.Dhop(src, result, DaggerNo);
std::cout << GridLogMessage << "r_e" << norm2(r_e) << std::endl;
std::cout << GridLogMessage << "r_o" << norm2(r_o) << std::endl;
std::cout << GridLogMessage << "res" << norm2(result) << std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
err = r_eo - result;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
if ((norm2(err) > 1.0e-4))
{
/*
std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl;
*/
}
pickCheckerboard(Even, src_e, err);
pickCheckerboard(Odd, src_o, err);
std::cout << GridLogMessage << "norm diff even " << norm2(src_e) << std::endl;
std::cout << GridLogMessage << "norm diff odd " << norm2(src_o) << std::endl;
assert(norm2(src_e) < 1.0e-4);
assert(norm2(src_o) < 1.0e-4);
if (!json_filename.empty())
{
std::cout << GridLogMessage << "writing benchmark results to " << json_filename
<< std::endl;
int me = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
if (me == 0)
{
std::ofstream json_file(json_filename);
json_file << std::setw(4) << json;
}
}
2023-01-13 19:00:20 +00:00
Grid_finalize();
exit(0);
}