#include #include #include #include #include #include #include #include #include #include #include using namespace quda; // This is the MPI grid, i.e. the layout of ranks int nranks = -1; std::array mpi_grid = {1, 1, 1, 1}; void initComms(int argc, char **argv) { // init MPI communication MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &nranks); assert(1 <= nranks && nranks <= 100000); mpi_grid[3] = nranks; // this maps coordinates to rank number auto lex_rank_from_coords = [](int const *coords, void *) { int rank = coords[0]; for (int i = 1; i < 4; i++) rank = mpi_grid[i] * rank + coords[i]; return rank; }; initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr); for (int d = 0; d < 4; d++) if (mpi_grid[d] > 1) commDimPartitionedSet(d); } // creates a random gauge field. L = local(!) size cudaGaugeField make_gauge_field(int L) { GaugeFieldParam param; // dimension and type of the lattice object param.nDim = 4; param.x[0] = L; param.x[1] = L; param.x[2] = L; param.x[3] = L; // number of colors. potentially confusingly, QUDA sometimes uses the word "color" to // things unrelated with physical color. things like "nColor=32" do pop up in deflation // solvers where it (to my understanding) refers to the number of (parallely processed) // deflation vectors. param.nColor = 3; // boundary conditions (dont really care for benchmark) param.t_boundary = QUDA_PERIODIC_T; // for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller // precisions are available in QUDA too param.setPrecision(QUDA_DOUBLE_PRECISION); // no even/odd subset, we want a full lattice param.siteSubset = QUDA_FULL_SITE_SUBSET; // what kind of 3x3 matrices the field contains. A proper gauge field has SU(3) // matrices, but (for example) smeared/thick links could have non-unitary links. param.link_type = QUDA_SU3_LINKS; // "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0 param.create = QUDA_NULL_FIELD_CREATE; // field should be allocated directly on the accelerator/GPU param.location = QUDA_CUDA_FIELD_LOCATION; // "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real // numbers (=3x3 complex numbers). Great feature in production (saving // memory/cache/network bandwidth), not used for this benchmark. param.reconstruct = QUDA_RECONSTRUCT_NO; // "ghostExchange" would often be called "halo exchange" outside of Quda. This has // nothing to do with ghost fields from continuum/perturbative qcd. param.ghostExchange = QUDA_GHOST_EXCHANGE_NO; // This controls the physical order of elements. "float2" is the the default param.order = QUDA_FLOAT2_GAUGE_ORDER; // this means the field is a LORENTZ vector (which a gauge field must be). Has nothing // to do with spin. param.geometry = QUDA_VECTOR_GEOMETRY; // create the field and fill with random SU(3) matrices // std::cout << param << std::endl; // double-check parameters auto U = cudaGaugeField(param); gaugeGauss(U, /*seed=*/1234, 1.0); return U; } // create a random source vector (L = local size) ColorSpinorField make_source(int L) { ColorSpinorParam param; param.nColor = 3; param.nSpin = 4; param.nVec = 1; // only a single vector param.pad = 0; param.siteSubset = QUDA_FULL_SITE_SUBSET; param.nDim = 4; param.x[0] = L; param.x[1] = L; param.x[2] = L; param.x[3] = L; param.x[4] = 1; // no fifth dimension param.pc_type = QUDA_4D_PC; param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS; param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field param.setPrecision(QUDA_DOUBLE_PRECISION); param.location = QUDA_CUDA_FIELD_LOCATION; // create the field and fill it with random values auto src = ColorSpinorField(param); quda::RNG rng(src, 1234); spinorNoise(src, rng, QUDA_NOISE_GAUSS); /*printfQuda( "created src with norm = %f (sanity check: should be close to %f) and %f bytes\n", blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3], src.Bytes() * 1.0);*/ // src.PrintDims(); return src; } void benchmark_wilson() { int niter = 20; int niter_warmup = 10; printfQuda("==================== wilson dirac operator ====================\n"); printfQuda("IMPORTANT: QUDAs own flop counting. Probably not the same as in Grid.\n"); printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank"); for (int L : {8, 12, 16, 24, 32}) { auto U = make_gauge_field(L); auto src = make_source(L); // create (Wilson) dirac operator DiracParam param; param.kappa = 0.10; param.dagger = QUDA_DAG_NO; param.matpcType = QUDA_MATPC_EVEN_EVEN; auto dirac = DiracWilson(param); // insert gauge field into the dirac operator // (the additional nullptr's are for smeared links and fancy preconditioners and such. // Not used for simple Wilson fermions) dirac.updateFields(&U, nullptr, nullptr, nullptr); auto tmp = ColorSpinorField(ColorSpinorParam(src)); // couple iterations without timing to warm up for (int iter = 0; iter < niter_warmup; ++iter) dirac.M(tmp, src); // actual benchmark with timings dirac.Flops(); // reset flops counter device_timer_t device_timer; device_timer.start(); for (int iter = 0; iter < niter; ++iter) dirac.M(tmp, src); device_timer.stop(); double secs = device_timer.last() / niter; double flops = 1.0 * dirac.Flops() / niter; printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9); } } void benchmark_axpy() { // number of iterations for warmup / measurement // (feel free to change for noise/time tradeoff) constexpr int niter_warmup = 10; constexpr int niter = 20; printfQuda("==================== axpy / memory ====================\n"); ColorSpinorParam param; param.nDim = 4; // 4-dimensional lattice param.x[4] = 1; // no fifth dimension param.nColor = 3; // supported values for nSpin/nColor are configured when compiling // QUDA. "3*4" will probably always be enabled, so we stick with this param.nSpin = 4; param.nVec = 1; // just a single vector param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even param.pad = 0; // no padding param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU param.setPrecision(QUDA_DOUBLE_PRECISION); // the following dont matter for an axpy benchmark, but need to choose something param.pc_type = QUDA_4D_PC; param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS; printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)", "GiB/s/rank", "Gflop/s/rank"); std::vector L_list = {8, 12, 16, 24, 32}; for (int L : L_list) { // IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()` // are LOCAL, i.e. per rank / per GPU param.x[0] = L; param.x[1] = L; param.x[2] = L; param.x[3] = L; // number of (real) elements in one (local) field size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin; // create the field(s) auto fieldA = ColorSpinorField(param); auto fieldB = ColorSpinorField(param); assert(fieldA.Bytes() == sizeof(double) * field_elements); // sanity check assert(fieldB.Bytes() == sizeof(double) * field_elements); // sanity check // fill fields with random values quda::RNG rng(fieldA, 1234); spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS); spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS); // number of operations / bytes per iteration // axpy is one addition, one multiplication, two read, one write double flops = 2 * field_elements; double memory = 3 * sizeof(double) * field_elements; // do some iterations to to let QUDA do its internal tuning and also stabilize cache // behaviour and such for (int iter = 0; iter < niter_warmup; ++iter) blas::axpy(1.234, fieldA, fieldB); // running the actual benchmark device_timer_t device_timer; device_timer.start(); for (int iter = 0; iter < niter; ++iter) blas::axpy(1.234, fieldA, fieldB); device_timer.stop(); double secs = device_timer.last() / niter; // seconds per iteration printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6, memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9); } } int main(int argc, char **argv) { initComms(argc, argv); initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used // verbosity options are: // SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE setVerbosity(QUDA_SUMMARIZE); printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2], mpi_grid[3]); benchmark_axpy(); setVerbosity(QUDA_SILENT); benchmark_wilson(); setVerbosity(QUDA_SUMMARIZE); printfQuda("==================== done with all benchmarks ====================\n"); endQuda(); quda::comm_finalize(); MPI_Finalize(); }