#include #include #include #include #include // #include #include #include #include #include #include #include using namespace quda; QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION; // This is the MPI grid, i.e. the layout of ranks, not the lattice volume std::array gridsize = {1, 1, 1, 4}; void initComms(int argc, char **argv, std::array const &commDims) { // init MPI communication MPI_Init(&argc, &argv); // this maps coordinates to rank number auto lex_rank_from_coords = [](int const *coords, void *) { int rank = coords[0]; for (int i = 1; i < 4; i++) rank = gridsize[i] * rank + coords[i]; return rank; }; initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr); for (int d = 0; d < 4; d++) if (gridsize[d] > 1) commDimPartitionedSet(d); } // creates a random gauge field cudaGaugeField make_gauge_field(std::array const &geom) { GaugeFieldParam param; // dimension and type of the lattice object param.nDim = 4; param.x[0] = geom[0]; param.x[1] = geom[1]; param.x[2] = geom[2]; param.x[3] = geom[3]; // number of colors. potentially confusingly, QUDA sometimes uses the word "color" to // things unrelated with physical color. things like "nColor=32" do pop up in deflation // solvers where it (to my understanding) refers to the number of (parallely processed) // deflation vectors. param.nColor = 3; // boundary conditions (dont really care for benchmark) param.t_boundary = QUDA_PERIODIC_T; // for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller // precisions are available in QUDA too param.setPrecision(QUDA_DOUBLE_PRECISION); // no even/odd subset, we want a full lattice param.siteSubset = QUDA_FULL_SITE_SUBSET; // what kind of 3x3 matrices the field contains. A proper gauge field has SU(3) // matrices, but (for example) smeared/thick links could have non-unitary links. param.link_type = QUDA_SU3_LINKS; // "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0 param.create = QUDA_NULL_FIELD_CREATE; // field should be allocated directly on the accelerator/GPU param.location = QUDA_CUDA_FIELD_LOCATION; // "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real // numbers (=3x3 complex numbers). Great feature in production (saving // memory/cache/network bandwidth), not used for this benchmark. param.reconstruct = QUDA_RECONSTRUCT_NO; // "ghostExchange" would often be called "halo exchange" outside of Quda. This has // nothing to do with ghost fields from continuum/perturbative qcd. param.ghostExchange = QUDA_GHOST_EXCHANGE_NO; // This controls the physical order of elements. "float2" is the the default param.order = QUDA_FLOAT2_GAUGE_ORDER; // this means the field is a LORENTZ vector (which a gauge field must be). Has nothing // to do with spin. param.geometry = QUDA_VECTOR_GEOMETRY; // create the field and fill with random SU(3) matrices // std::cout << param << std::endl; // double-check parameters auto U = cudaGaugeField(param); gaugeGauss(U, /*seed=*/1234, 1.0); return U; } // create a random source vector ColorSpinorField make_source(std::array const &geom) { ColorSpinorParam param; param.nColor = 3; param.nSpin = 4; param.nVec = 1; // only a single vector param.pad = 0; param.siteSubset = QUDA_FULL_SITE_SUBSET; param.nDim = 4; param.x[0] = geom[0]; param.x[1] = geom[1]; param.x[2] = geom[2]; param.x[3] = geom[3]; param.x[4] = 1; // no fifth dimension param.pc_type = QUDA_4D_PC; param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS; param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field param.setPrecision(QUDA_DOUBLE_PRECISION); param.location = QUDA_CUDA_FIELD_LOCATION; // create the field and fill it with random values auto src = ColorSpinorField(param); quda::RNG rng(src, 1234); spinorNoise(src, rng, QUDA_NOISE_GAUSS); /*printfQuda( "created src with norm = %f (sanity check: should be close to %f) and %f bytes\n", blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3], src.Bytes() * 1.0);*/ // src.PrintDims(); return src; } void benchmark(int L, int niter) { std::array geom = {L, L, L, L}; printfQuda("======================= benchmarking L=%d =======================\n", L); auto U = make_gauge_field(geom); printfQuda("created random gauge field, %.3f GiB (sanity check: should be %.3f)\n", U.Bytes() / 1024. / 1024. / 1024., 1.0 * L * L * L * L * 4 * 18 * 8 / 1024. / 1024. / 1024.); auto src = make_source(geom); printfQuda("created random source, %.3f GiB (sanity check: should be %.3f)\n", src.Bytes() / 1024. / 1024. / 1024., 1.0 * L * L * L * L * 12 * 2 * 8 / 1024. / 1024. / 1024.); // create (Wilson) dirac operator DiracParam param; param.kappa = 0.10; param.dagger = QUDA_DAG_NO; param.matpcType = QUDA_MATPC_EVEN_EVEN; auto dirac = DiracWilson(param); // insert gauge field into the dirac operator // (the additional nullptr's are for smeared links and fancy preconditioners and such. // Not used for simple Wilson fermions) dirac.updateFields(&U, nullptr, nullptr, nullptr); auto tmp = ColorSpinorField(ColorSpinorParam(src)); printfQuda("benchmarking Dirac operator. geom=(%d,%d,%d,%d), niter=%d\n", geom[0], geom[1], geom[2], geom[3], niter); // couple iterations without timing to warm up printfQuda("warmup...\n"); for (int iter = 0; iter < 20; ++iter) dirac.M(tmp, src); printfQuda("running...\n"); dirac.Flops(); // reset flops counter device_timer_t device_timer; device_timer.start(); for (int iter = 0; iter < niter; ++iter) dirac.M(tmp, src); device_timer.stop(); double secs = device_timer.last(); double gflops = (dirac.Flops() * 1e-9) / secs; printfQuda("Gflops = %6.2f\n", gflops); } void benchmark_axpy(int L) { printfQuda("================ axpy L=%d ==============\n", L); ColorSpinorParam param; param.nColor = 3; param.nSpin = 4; param.nVec = 1; param.pad = 0; param.siteSubset = QUDA_FULL_SITE_SUBSET; param.nDim = 4; param.x[0] = L; param.x[1] = L; param.x[2] = L; param.x[3] = L; param.x[4] = 1; // no fifth dimension param.pc_type = QUDA_4D_PC; param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS; param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field param.setPrecision(QUDA_DOUBLE_PRECISION); param.location = QUDA_CUDA_FIELD_LOCATION; // create the field and fill it with random values auto fieldA = ColorSpinorField(param); auto fieldB = ColorSpinorField(param); quda::RNG rng(fieldA, 1234); auto size_bytes = size_t(8) * 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin; assert(fieldA.Bytes() == size_bytes); // sanity check assert(fieldB.Bytes() == size_bytes); // sanity check spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS); spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS); // number of (real) elements in the field = number of fma instructions to do double flops_per_iter = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin; int niter = 20; printfQuda("warmup...\n"); for (int iter = 0; iter < 10; ++iter) blas::axpy(1.234, fieldA, fieldB); printfQuda("running...\n"); device_timer_t device_timer; device_timer.start(); for (int iter = 0; iter < niter; ++iter) blas::axpy(1.234, fieldA, fieldB); // fieldB += 1.234*fieldA device_timer.stop(); double secs = device_timer.last(); double gflops = (flops_per_iter * niter) * 1e-9 / secs; printfQuda("Gflops = %6.2f\n", gflops); printfQuda("bytes = %6.2f GiB\n", 3. * fieldA.Bytes() / 1024. / 1024. / 1024.); printfQuda("bandwidth = %6.2f GiB/s\n", fieldA.Bytes() * 3 / 1024. / 1024. / 1024. * niter / secs); } int main(int argc, char **argv) { initComms(argc, argv, gridsize); initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used // verbosity options are: // SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE setVerbosity(QUDA_VERBOSE); for (int L : {8, 12, 16, 24, 32}) benchmark_axpy(L); for (int L : {16, 24, 32, 48, 64}) benchmark(L, 100); endQuda(); quda::comm_finalize(); MPI_Finalize(); }