/* Copyright © 2015 Peter Boyle Copyright © 2022 Antonin Portelli This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #ifdef GRID_CUDA #define CUDA_PROFILE #endif #ifdef CUDA_PROFILE #include #endif using namespace std; using namespace Grid; template struct scal { d internal; }; Gamma::Algebra Gmu[] = {Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT}; int main(int argc, char **argv) { Grid_init(&argc, &argv); int threads = GridThread::GetThreads(); Coordinate latt4 = GridDefaultLatt(); int Ls = 16; for (int i = 0; i < argc; i++) if (std::string(argv[i]) == "-Ls") { std::stringstream ss(argv[i + 1]); ss >> Ls; } GridLogLayout(); long unsigned int single_site_flops = 8 * Nc * (7 + 16 * Nc); GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid( GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid); std::cout << GridLogMessage << "Making s innermost grids" << std::endl; GridCartesian *sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(), GridDefaultMpi()); GridRedBlackCartesian *sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid); GridCartesian *sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls, UGrid); GridRedBlackCartesian *sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls, UGrid); std::vector seeds4({1, 2, 3, 4}); std::vector seeds5({5, 6, 7, 8}); std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl; GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString(std::string("The 4D RNG")); std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl; GridParallelRNG RNG5(FGrid); RNG5.SeedUniqueString(std::string("The 5D RNG")); std::cout << GridLogMessage << "Initialised RNGs" << std::endl; LatticeFermionF src(FGrid); random(RNG5, src); #if 0 src = Zero(); { Coordinate origin({0,0,0,latt4[2]-1,0}); SpinColourVectorF tmp; tmp=Zero(); tmp()(0)(0)=Complex(-2.0,0.0); std::cout << " source site 0 " << tmp<::HotConfiguration(RNG4, Umu); std::cout << GridLogMessage << "Random gauge initialised " << std::endl; #if 0 Umu=1.0; for(int mu=0;mu(Umu,mu); // if (mu !=2 ) ttmp = 0; // ttmp = ttmp* pow(10.0,mu); PokeIndex(Umu,ttmp,mu); } std::cout << GridLogMessage << "Forced to diagonal " << std::endl; #endif //////////////////////////////////// // Naive wilson implementation //////////////////////////////////// // replicate across fifth dimension // LatticeGaugeFieldF Umu5d(FGrid); std::vector U(4, UGrid); for (int mu = 0; mu < Nd; mu++) { U[mu] = PeekIndex(Umu, mu); } std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl; if (1) { ref = Zero(); for (int mu = 0; mu < Nd; mu++) { tmp = Cshift(src, mu + 1, 1); { autoView(tmp_v, tmp, CpuWrite); autoView(U_v, U[mu], CpuRead); for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++) { for (int s = 0; s < Ls; s++) { tmp_v[Ls * ss + s] = U_v[ss] * tmp_v[Ls * ss + s]; } } } ref = ref + tmp - Gamma(Gmu[mu]) * tmp; { autoView(tmp_v, tmp, CpuWrite); autoView(U_v, U[mu], CpuRead); autoView(src_v, src, CpuRead); for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++) { for (int s = 0; s < Ls; s++) { tmp_v[Ls * ss + s] = adj(U_v[ss]) * src_v[Ls * ss + s]; } } } tmp = Cshift(tmp, mu + 1, -1); ref = ref + tmp + Gamma(Gmu[mu]) * tmp; } ref = -0.5 * ref; } RealD mass = 0.1; RealD M5 = 1.8; RealD NP = UGrid->_Nprocessors; RealD NN = UGrid->NodeCount(); std::cout << GridLogMessage << "*****************************************************************" << std::endl; std::cout << GridLogMessage << "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" << std::endl; std::cout << GridLogMessage << "*****************************************************************" << std::endl; std::cout << GridLogMessage << "*****************************************************************" << std::endl; std::cout << GridLogMessage << "* Benchmarking DomainWallFermionR::Dhop " << std::endl; std::cout << GridLogMessage << "* Vectorising space-time by " << vComplexF::Nsimd() << std::endl; std::cout << GridLogMessage << "* VComplexF size is " << sizeof(vComplexF) << " B" << std::endl; if (sizeof(RealF) == 4) std::cout << GridLogMessage << "* SINGLE precision " << std::endl; if (sizeof(RealF) == 8) std::cout << GridLogMessage << "* DOUBLE precision " << std::endl; #ifdef GRID_OMP if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute) std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl; if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage << "* Using sequential comms compute" << std::endl; #endif if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric) std::cout << GridLogMessage << "* Using GENERIC Nc WilsonKernels" << std::endl; if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage << "* Using Nc=3 WilsonKernels" << std::endl; if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm) std::cout << GridLogMessage << "* Using Asm Nc=3 WilsonKernels" << std::endl; std::cout << GridLogMessage << "*****************************************************************" << std::endl; DomainWallFermionF Dw(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5); int ncall = 300; if (1) { FGrid->Barrier(); Dw.ZeroCounters(); Dw.Dhop(src, result, 0); std::cout << GridLogMessage << "Called warmup" << std::endl; double t0 = usecond(); for (int i = 0; i < ncall; i++) { __SSC_START; Dw.Dhop(src, result, 0); __SSC_STOP; } double t1 = usecond(); FGrid->Barrier(); double volume = Ls; for (int mu = 0; mu < Nd; mu++) volume = volume * latt4[mu]; double flops = single_site_flops * volume * ncall; auto nsimd = vComplex::Nsimd(); auto simdwidth = sizeof(vComplex); // RF: Nd Wilson * Ls, Nd gauge * Ls, Nc colors double data_rf = volume * ((2 * Nd + 1) * Nd * Nc + 2 * Nd * Nc * Nc) * simdwidth / nsimd * ncall / (1024. * 1024. * 1024.); // mem: Nd Wilson * Ls, Nd gauge, Nc colors double data_mem = (volume * (2 * Nd + 1) * Nd * Nc + (volume / Ls) * 2 * Nd * Nc * Nc) * simdwidth / nsimd * ncall / (1024. * 1024. * 1024.); std::cout << GridLogMessage << "Called Dw " << ncall << " times in " << t1 - t0 << " us" << std::endl; // std::cout< 1.0e-4)) { /* std::cout << "RESULT\n " << result<Barrier(); exit(-1); } assert(norm2(err) < 1.0e-4); Dw.Report(); } if (1) { // Naive wilson dag implementation ref = Zero(); for (int mu = 0; mu < Nd; mu++) { // ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x tmp = Cshift(src, mu + 1, 1); { autoView(ref_v, ref, CpuWrite); autoView(tmp_v, tmp, CpuRead); autoView(U_v, U[mu], CpuRead); for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++) { for (int s = 0; s < Ls; s++) { int i = s + Ls * ss; ref_v[i] += U_v[ss] * (tmp_v[i] + Gamma(Gmu[mu]) * tmp_v[i]); ; } } } { autoView(tmp_v, tmp, CpuWrite); autoView(U_v, U[mu], CpuRead); autoView(src_v, src, CpuRead); for (int ss = 0; ss < U[mu].Grid()->oSites(); ss++) { for (int s = 0; s < Ls; s++) { tmp_v[Ls * ss + s] = adj(U_v[ss]) * src_v[Ls * ss + s]; } } } // tmp =adj(U[mu])*src; tmp = Cshift(tmp, mu + 1, -1); { autoView(ref_v, ref, CpuWrite); autoView(tmp_v, tmp, CpuRead); for (int i = 0; i < ref_v.size(); i++) { ref_v[i] += tmp_v[i] - Gamma(Gmu[mu]) * tmp_v[i]; ; } } } ref = -0.5 * ref; } // dump=1; Dw.Dhop(src, result, 1); std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl; std::cout << GridLogMessage << "Called DwDag" << std::endl; std::cout << GridLogMessage << "norm dag result " << norm2(result) << std::endl; std::cout << GridLogMessage << "norm dag ref " << norm2(ref) << std::endl; err = ref - result; std::cout << GridLogMessage << "norm dag diff " << norm2(err) << std::endl; if ((norm2(err) > 1.0e-4)) { /* std::cout<< "DAG RESULT\n " <Barrier(); Dw.DhopEO(src_o, r_e, DaggerNo); double t0 = usecond(); for (int i = 0; i < ncall; i++) { #ifdef CUDA_PROFILE if (i == 10) cudaProfilerStart(); #endif Dw.DhopEO(src_o, r_e, DaggerNo); #ifdef CUDA_PROFILE if (i == 20) cudaProfilerStop(); #endif } double t1 = usecond(); FGrid->Barrier(); double volume = Ls; for (int mu = 0; mu < Nd; mu++) volume = volume * latt4[mu]; double flops = (single_site_flops * volume * ncall) / 2.0; std::cout << GridLogMessage << "Deo mflop/s = " << flops / (t1 - t0) << std::endl; std::cout << GridLogMessage << "Deo mflop/s per rank " << flops / (t1 - t0) / NP << std::endl; std::cout << GridLogMessage << "Deo mflop/s per node " << flops / (t1 - t0) / NN << std::endl; Dw.Report(); } Dw.DhopEO(src_o, r_e, DaggerNo); Dw.DhopOE(src_e, r_o, DaggerNo); Dw.Dhop(src, result, DaggerNo); std::cout << GridLogMessage << "r_e" << norm2(r_e) << std::endl; std::cout << GridLogMessage << "r_o" << norm2(r_o) << std::endl; std::cout << GridLogMessage << "res" << norm2(result) << std::endl; setCheckerboard(r_eo, r_o); setCheckerboard(r_eo, r_e); err = r_eo - result; std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl; if ((norm2(err) > 1.0e-4)) { /* std::cout<< "Deo RESULT\n " <