#include #include #include #include #include // #include #include #include #include #include #include #include using namespace quda; QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION; std::array gridsize = {1, 1, 1, 4}; void initComms(int argc, char **argv, std::array const &commDims) { // init MPI communication MPI_Init(&argc, &argv); // this maps coordinates to rank number auto lex_rank_from_coords = [](int const *coords, void *) { int rank = coords[0]; for (int i = 1; i < 4; i++) rank = gridsize[i] * rank + coords[i]; return rank; }; initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr); for (int d = 0; d < 4; d++) if (gridsize[d] > 1) commDimPartitionedSet(d); } // creates a random gauge field cudaGaugeField make_gauge_field(std::array const &geom) { GaugeFieldParam param; // dimension and type of the lattice object param.nDim = 4; param.nColor = 3; param.x[0] = geom[0]; param.x[1] = geom[1]; param.x[2] = geom[2]; param.x[3] = geom[3]; param.t_boundary = QUDA_PERIODIC_T; param.siteSubset = QUDA_FULL_SITE_SUBSET; // no even/odd, just a full lattice param.link_type = QUDA_SU3_LINKS; param.setPrecision(QUDA_DOUBLE_PRECISION); param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the fields param.location = QUDA_CUDA_FIELD_LOCATION; // field should live on the accelerator // turn off advanced features we dont care about for this benchmark param.reconstruct = QUDA_RECONSTRUCT_NO; param.ghostExchange = QUDA_GHOST_EXCHANGE_NO; // these control the physical data layout. Might be interesting to try out different // settings param.order = QUDA_FLOAT2_GAUGE_ORDER; param.geometry = QUDA_SCALAR_GEOMETRY; // create the field and fill with random SU(3) matrices auto U = cudaGaugeField(param); quda::RNG rng(U, /*seed=*/1234); gaugeGauss(U, rng, 1.0); return U; } // create a random source vector ColorSpinorField make_source(std::array const &geom) { ColorSpinorParam param; param.nColor = 3; param.nSpin = 4; param.nVec = 1; // only a single vector param.pad = 0; param.siteSubset = QUDA_FULL_SITE_SUBSET; param.nDim = 4; param.x[0] = geom[0]; param.x[1] = geom[1]; param.x[2] = geom[2]; param.x[3] = geom[3]; param.x[4] = 1; // no fifth dimension param.pc_type = QUDA_4D_PC; param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS; param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field param.setPrecision(QUDA_DOUBLE_PRECISION); param.location = QUDA_CUDA_FIELD_LOCATION; // create the field and fill it with random values auto src = ColorSpinorField(param); quda::RNG rng(src, 1234); spinorNoise(src, rng, QUDA_NOISE_GAUSS); printfQuda( "created src with norm = %f (sanity check: should be close to %f) and %f bytes\n", blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3], src.Bytes() * 1.0); src.PrintDims(); return src; } void benchmark(int L, int niter) { std::array geom = {L, L, L, L}; auto U = make_gauge_field(geom); auto src = make_source(geom); // create (Wilson) dirac operator DiracParam param; param.kappa = 0.10; param.dagger = QUDA_DAG_NO; param.matpcType = QUDA_MATPC_EVEN_EVEN; auto dirac = DiracWilson(param); // insert gauge field into the dirac operator // (the additional nullptr's are for smeared links and fancy preconditioners and such. // Not used for simple Wilson fermions) dirac.updateFields(&U, nullptr, nullptr, nullptr); auto tmp = ColorSpinorField(ColorSpinorParam(src)); printfQuda("benchmarking Dirac operator. geom=(%d,%d,%d,%d), niter=%d\n", geom[0], geom[1], geom[2], geom[3], niter); // couple iterations without timing to warm up for (int iter = 0; iter < 20; ++iter) dirac.M(tmp, src); dirac.Flops(); // reset flops counter device_timer_t device_timer; device_timer.start(); for (int iter = 0; iter < niter; ++iter) dirac.M(tmp, src); device_timer.stop(); double secs = device_timer.last(); double gflops = (dirac.Flops() * 1e-9) / secs; printfQuda("Gflops = %6.1f\n", gflops); } int main(int argc, char **argv) { initComms(argc, argv, gridsize); // -1 for multi-gpu. otherwise this selects the device to be used initQuda(-1); // verbosity options are: // SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE setVerbosity(QUDA_SUMMARIZE); for (int L : {8, 16, 24, 32}) benchmark(L, 1000); endQuda(); quda::comm_finalize(); MPI_Finalize(); }