1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/Hadrons/VirtualMachine.cc

737 lines
22 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
2018-09-01 21:30:30 +01:00
Source file: Hadrons/VirtualMachine.cc
2019-02-05 18:55:24 +00:00
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/VirtualMachine.hpp>
#include <Hadrons/GeneticScheduler.hpp>
#include <Hadrons/ModuleFactory.hpp>
using namespace Grid;
using namespace Hadrons;
/******************************************************************************
* VirtualMachine implementation *
******************************************************************************/
// trajectory counter //////////////////////////////////////////////////////////
void VirtualMachine::setTrajectory(const unsigned int traj)
{
traj_ = traj;
}
unsigned int VirtualMachine::getTrajectory(void) const
{
return traj_;
}
// run tag /////////////////////////////////////////////////////////////////////
void VirtualMachine::setRunId(const std::string id)
{
runId_ = id;
}
std::string VirtualMachine::getRunId(void) const
{
return runId_;
}
// module management ///////////////////////////////////////////////////////////
void VirtualMachine::pushModule(VirtualMachine::ModPt &pt)
{
std::string name = pt->getName();
if (!hasModule(name))
{
std::vector<unsigned int> inputAddress;
unsigned int address;
ModuleInfo m;
2017-12-13 12:13:40 +00:00
// module registration -------------------------------------------------
m.data = std::move(pt);
m.type = typeIdPt(*m.data.get());
m.name = name;
2017-12-13 12:13:40 +00:00
// input dependencies
for (auto &in: m.data->getInput())
{
if (!env().hasObject(in))
{
2017-12-13 12:13:40 +00:00
// if object does not exist, add it with no creator module
env().addObject(in , -1);
}
m.input.push_back(env().getObjectAddress(in));
}
2017-12-13 12:13:40 +00:00
// reference dependencies
for (auto &ref: m.data->getReference())
{
if (!env().hasObject(ref))
{
2017-12-13 12:13:40 +00:00
// if object does not exist, add it with no creator module
env().addObject(ref , -1);
}
m.input.push_back(env().getObjectAddress(ref));
}
2017-12-14 19:42:16 +00:00
auto inCopy = m.input;
// if module has inputs with references, they need to be added as
// an input
for (auto &in: inCopy)
{
int inm = env().getObjectModule(in);
if (inm > 0)
{
if (getModule(inm)->getReference().size() > 0)
{
for (auto &rin: getModule(inm)->getReference())
{
m.input.push_back(env().getObjectAddress(rin));
}
}
}
}
module_.push_back(std::move(m));
address = static_cast<unsigned int>(module_.size() - 1);
moduleAddress_[name] = address;
2017-12-13 12:13:40 +00:00
// connecting outputs to potential inputs ------------------------------
for (auto &out: getModule(address)->getOutput())
{
if (!env().hasObject(out))
{
2017-12-13 12:13:40 +00:00
// output does not exists, add it
env().addObject(out, address);
2018-03-03 13:42:36 +00:00
module_[address].output.push_back(env().getObjectAddress(out));
}
else
{
if (env().getObjectModule(env().getObjectAddress(out)) < 0)
{
2017-12-13 12:13:40 +00:00
// output exists but without creator, correct it
env().setObjectModule(env().getObjectAddress(out), address);
}
else
{
2017-12-13 12:13:40 +00:00
// output already fully registered, error
2018-07-26 16:47:45 +01:00
HADRONS_ERROR_REF(ObjectDefinition, "object '" + out
+ "' is already produced by module '"
+ module_[env().getObjectModule(out)].name
2018-07-26 16:47:45 +01:00
+ "' (while pushing module '" + name + "')",
env().getObjectAddress(out));
}
if (getModule(address)->getReference().size() > 0)
{
2017-12-13 12:13:40 +00:00
// module has references, dependency should be propagated
// to children modules; find module with `out` as an input
// and add references to their input
auto pred = [this, out](const ModuleInfo &n)
{
auto &in = n.input;
2017-12-13 12:13:40 +00:00
auto it = std::find(in.begin(), in.end(),
env().getObjectAddress(out));
return (it != in.end());
};
auto it = std::find_if(module_.begin(), module_.end(), pred);
while (it != module_.end())
{
for (auto &ref: getModule(address)->getReference())
{
it->input.push_back(env().getObjectAddress(ref));
}
it = std::find_if(++it, module_.end(), pred);
}
}
}
}
2017-12-13 16:36:15 +00:00
graphOutdated_ = true;
memoryProfileOutdated_ = true;
}
else
{
HADRONS_ERROR(Definition, "module '" + name + "' already exists");
}
}
unsigned int VirtualMachine::getNModule(void) const
{
return module_.size();
}
void VirtualMachine::createModule(const std::string name, const std::string type,
2017-12-13 12:13:40 +00:00
XmlReader &reader)
{
auto &factory = ModuleFactory::getInstance();
auto pt = factory.create(type, name);
pt->parseParameters(reader, "options");
pushModule(pt);
}
ModuleBase * VirtualMachine::getModule(const unsigned int address) const
{
if (hasModule(address))
{
return module_[address].data.get();
}
else
{
HADRONS_ERROR(Definition, "no module with address " + std::to_string(address));
}
}
ModuleBase * VirtualMachine::getModule(const std::string name) const
{
return getModule(getModuleAddress(name));
}
unsigned int VirtualMachine::getModuleAddress(const std::string name) const
{
if (hasModule(name))
{
return moduleAddress_.at(name);
}
else
{
HADRONS_ERROR(Definition, "no module with name '" + name + "'");
}
}
std::string VirtualMachine::getModuleName(const unsigned int address) const
{
if (hasModule(address))
{
return module_[address].name;
}
else
{
HADRONS_ERROR(Definition, "no module with address " + std::to_string(address));
}
}
std::string VirtualMachine::getModuleType(const unsigned int address) const
{
if (hasModule(address))
{
return typeName(module_[address].type);
}
else
{
HADRONS_ERROR(Definition, "no module with address " + std::to_string(address));
}
}
std::string VirtualMachine::getModuleType(const std::string name) const
{
return getModuleType(getModuleAddress(name));
}
std::string VirtualMachine::getModuleNamespace(const unsigned int address) const
{
std::string type = getModuleType(address), ns;
auto pos2 = type.rfind("::");
auto pos1 = type.rfind("::", pos2 - 2);
return type.substr(pos1 + 2, pos2 - pos1 - 2);
}
std::string VirtualMachine::getModuleNamespace(const std::string name) const
{
return getModuleNamespace(getModuleAddress(name));
}
int VirtualMachine::getCurrentModule(void) const
{
return currentModule_;
}
bool VirtualMachine::hasModule(const unsigned int address) const
{
return (address < module_.size());
}
bool VirtualMachine::hasModule(const std::string name) const
{
return (moduleAddress_.find(name) != moduleAddress_.end());
}
2017-12-13 13:44:23 +00:00
// print VM content ////////////////////////////////////////////////////////////
void VirtualMachine::printContent(void) const
{
2017-12-13 13:44:23 +00:00
LOG(Debug) << "Modules: " << std::endl;
for (unsigned int i = 0; i < module_.size(); ++i)
{
2017-12-13 13:44:23 +00:00
LOG(Debug) << std::setw(4) << i << ": "
<< getModuleName(i) << std::endl;
}
2017-12-13 13:44:23 +00:00
}
// module graph ////////////////////////////////////////////////////////////////
Graph<unsigned int> VirtualMachine::getModuleGraph(void)
{
if (graphOutdated_)
{
2017-12-13 13:44:23 +00:00
makeModuleGraph();
graphOutdated_ = false;
}
2017-12-13 13:44:23 +00:00
return graph_;
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::makeModuleGraph(void)
{
2017-12-13 13:44:23 +00:00
Graph<unsigned int> graph;
2017-12-13 13:44:23 +00:00
// create vertices
for (unsigned int m = 0; m < module_.size(); ++m)
{
2017-12-13 13:44:23 +00:00
graph.addVertex(m);
}
2017-12-13 13:44:23 +00:00
// create edges
for (unsigned int m = 0; m < module_.size(); ++m)
{
2017-12-13 13:44:23 +00:00
for (auto &in: module_[m].input)
{
2018-03-02 18:40:18 +00:00
int min = env().getObjectModule(in);
if (min < 0)
{
2018-07-26 16:47:45 +01:00
HADRONS_ERROR_REF(ObjectDefinition, "dependency '"
+ env().getObjectName(in) + "' (address "
+ std::to_string(in)
2018-07-26 16:47:45 +01:00
+ ") is not produced by any module", in);
2018-03-02 18:40:18 +00:00
}
else
{
graph.addEdge(min, m);
}
}
}
2017-12-13 13:44:23 +00:00
graph_ = graph;
}
2018-03-03 13:42:36 +00:00
// dump GraphViz graph /////////////////////////////////////////////////////////
void VirtualMachine::dumpModuleGraph(std::ostream &out)
{
makeModuleGraph();
out << "digraph hadrons {" << std::endl;
out << "node [shape=record, fontname=\"Courier\", fontsize=\"11\"];" << std::endl;
out << "graph [fontname = \"Courier\", fontsize=\"11\"];" << std::endl;
out << "edge [fontname = \"Courier\", fontsize=\"11\"];"<< std::endl;
for (unsigned int m = 0; m < module_.size(); ++m)
{
}
for (unsigned int m = 0; m < module_.size(); ++m)
{
for (auto &in: module_[m].input)
{
int min = env().getObjectModule(in);
out << min << " -> " << m << " [ label = \""
<< env().getObjectName(in) << "\" ];" << std::endl;
}
}
for (unsigned int m = 0; m < module_.size(); ++m)
{
out << m << " [ label = \"{<f0> " << getModule(m)->getRegisteredName()
<< " |<f1> " << getModuleName(m) << "}\" ];" << std::endl;
}
out << "}\n" << std::endl;
}
void VirtualMachine::dumpModuleGraph(void)
{
dumpModuleGraph(std::cout);
}
void VirtualMachine::dumpModuleGraph(const std::string filename)
{
std::ofstream f(filename);
dumpModuleGraph(f);
}
2017-12-13 13:44:23 +00:00
// memory profile //////////////////////////////////////////////////////////////
const VirtualMachine::MemoryProfile & VirtualMachine::getMemoryProfile(void)
{
2017-12-13 13:44:23 +00:00
if (memoryProfileOutdated_)
{
2017-12-13 13:44:23 +00:00
makeMemoryProfile();
memoryProfileOutdated_ = false;
}
2017-12-13 13:44:23 +00:00
return profile_;
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::makeMemoryProfile(void)
{
2017-12-13 13:44:23 +00:00
bool protect = env().objectsProtected();
bool hmsg = HadronsLogMessage.isActive();
bool gmsg = GridLogMessage.isActive();
bool err = HadronsLogError.isActive();
auto program = getModuleGraph().topoSort();
resetProfile();
profile_.module.resize(getNModule());
env().protectObjects(false);
GridLogMessage.Active(false);
HadronsLogMessage.Active(false);
for (auto it = program.rbegin(); it != program.rend(); ++it)
{
auto a = *it;
2017-12-13 13:44:23 +00:00
if (profile_.module[a].empty())
{
2017-12-13 12:13:40 +00:00
LOG(Debug) << "Profiling memory for module '" << module_[a].name
2018-07-26 16:47:45 +01:00
<< "' (" << a << ")" << std::endl;
2017-12-13 13:44:23 +00:00
memoryProfile(a);
env().freeAll();
}
}
env().protectObjects(protect);
GridLogMessage.Active(gmsg);
HadronsLogMessage.Active(hmsg);
LOG(Debug) << "Memory profile:" << std::endl;
LOG(Debug) << "----------------" << std::endl;
2017-12-13 13:44:23 +00:00
for (unsigned int a = 0; a < profile_.module.size(); ++a)
{
LOG(Debug) << getModuleName(a) << " (" << a << ")" << std::endl;
2017-12-13 13:44:23 +00:00
for (auto &o: profile_.module[a])
{
LOG(Debug) << "|__ " << env().getObjectName(o.first) << " ("
<< sizeString(o.second) << ")" << std::endl;
}
LOG(Debug) << std::endl;
}
LOG(Debug) << "----------------" << std::endl;
2017-12-13 13:44:23 +00:00
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::resetProfile(void)
{
profile_.module.clear();
profile_.object.clear();
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::resizeProfile(void)
{
2017-12-13 13:44:23 +00:00
if (env().getMaxAddress() > profile_.object.size())
{
MemoryPrint empty;
empty.size = 0;
empty.module = -1;
2017-12-13 13:44:23 +00:00
profile_.object.resize(env().getMaxAddress(), empty);
}
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::updateProfile(const unsigned int address)
{
2017-12-13 13:44:23 +00:00
resizeProfile();
for (unsigned int a = 0; a < env().getMaxAddress(); ++a)
{
2017-12-13 13:44:23 +00:00
if (env().hasCreatedObject(a) and (profile_.object[a].module == -1))
{
2017-12-13 13:44:23 +00:00
profile_.object[a].size = env().getObjectSize(a);
2017-12-13 16:36:15 +00:00
profile_.object[a].storage = env().getObjectStorage(a);
2017-12-13 13:44:23 +00:00
profile_.object[a].module = address;
profile_.module[address][a] = profile_.object[a].size;
if (env().getObjectModule(a) < 0)
{
env().setObjectModule(a, address);
}
}
}
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::cleanEnvironment(void)
{
2017-12-13 13:44:23 +00:00
resizeProfile();
for (unsigned int a = 0; a < env().getMaxAddress(); ++a)
{
2017-12-13 13:44:23 +00:00
if (env().hasCreatedObject(a) and (profile_.object[a].module == -1))
{
env().freeObject(a);
}
}
}
2017-12-13 13:44:23 +00:00
void VirtualMachine::memoryProfile(const unsigned int address)
{
auto m = getModule(address);
2017-12-13 13:44:23 +00:00
LOG(Debug) << "Setting up module '" << m->getName()
2018-07-26 16:47:45 +01:00
<< "' (" << address << ")" << std::endl;
try
{
currentModule_ = address;
m->setup();
currentModule_ = -1;
2017-12-13 13:44:23 +00:00
updateProfile(address);
}
2018-07-26 16:47:45 +01:00
catch (Exceptions::ObjectDefinition &exc)
{
2017-12-13 13:44:23 +00:00
cleanEnvironment();
2018-07-26 16:47:45 +01:00
if (!env().hasCreatedObject(exc.getAddress()))
{
2018-07-26 16:47:45 +01:00
LOG(Debug) << "Object '" << env().getObjectName(exc.getAddress())
<< "' missing for setup of '" << m->getName()
<< "' (" << address << ")" << std::endl;
memoryProfile(env().getObjectModule(exc.getAddress()));
}
2018-07-26 16:47:45 +01:00
memoryProfile(address);
2017-12-13 13:44:23 +00:00
}
}
void VirtualMachine::memoryProfile(const std::string name)
{
memoryProfile(getModuleAddress(name));
}
// garbage collector ///////////////////////////////////////////////////////////
2017-12-13 16:36:15 +00:00
VirtualMachine::GarbageSchedule
VirtualMachine::makeGarbageSchedule(const Program &p) const
2017-12-13 13:44:23 +00:00
{
GarbageSchedule freeProg;
freeProg.resize(p.size());
2017-12-13 16:36:15 +00:00
for (unsigned int a = 0; a < env().getMaxAddress(); ++a)
2017-12-13 13:44:23 +00:00
{
2017-12-13 16:36:15 +00:00
if (env().getObjectStorage(a) == Environment::Storage::temporary)
2017-12-13 13:44:23 +00:00
{
2017-12-13 16:36:15 +00:00
auto it = std::find(p.begin(), p.end(), env().getObjectModule(a));
if (it != p.end())
{
freeProg[std::distance(p.begin(), it)].insert(a);
}
}
else if (env().getObjectStorage(a) == Environment::Storage::object)
2017-12-13 13:44:23 +00:00
{
2017-12-13 16:36:15 +00:00
auto pred = [a, this](const unsigned int b)
{
auto &in = module_[b].input;
auto it = std::find(in.begin(), in.end(), a);
return (it != in.end()) or (b == env().getObjectModule(a));
};
auto it = std::find_if(p.rbegin(), p.rend(), pred);
if (it != p.rend())
{
freeProg[std::distance(it, p.rend()) - 1].insert(a);
}
2017-12-13 13:44:23 +00:00
}
}
return freeProg;
}
2017-12-13 16:36:15 +00:00
// high-water memory function //////////////////////////////////////////////////
VirtualMachine::Size VirtualMachine::memoryNeeded(const Program &p)
{
const MemoryProfile &profile = getMemoryProfile();
GarbageSchedule freep = makeGarbageSchedule(p);
Size current = 0, max = 0;
for (unsigned int i = 0; i < p.size(); ++i)
{
for (auto &o: profile.module[p[i]])
{
current += o.second;
}
max = std::max(current, max);
for (auto &o: freep[i])
{
current -= profile.object[o].size;
}
}
return max;
}
// genetic scheduler ///////////////////////////////////////////////////////////
VirtualMachine::Program VirtualMachine::schedule(const GeneticPar &par)
{
typedef GeneticScheduler<Size, unsigned int> Scheduler;
auto graph = getModuleGraph();
//constrained topological sort using a genetic algorithm
LOG(Message) << "Scheduling computation..." << std::endl;
LOG(Message) << " #module= " << graph.size() << std::endl;
LOG(Message) << " population size= " << par.popSize << std::endl;
LOG(Message) << " max. generation= " << par.maxGen << std::endl;
LOG(Message) << " max. cst. generation= " << par.maxCstGen << std::endl;
LOG(Message) << " mutation rate= " << par.mutationRate << std::endl;
2018-01-25 23:46:47 +00:00
unsigned int gen, prevPeak, nCstPeak = 0;
2017-12-13 16:36:15 +00:00
std::random_device rd;
Scheduler::Parameters gpar;
gpar.popSize = par.popSize;
gpar.mutationRate = par.mutationRate;
gpar.seed = rd();
CartesianCommunicator::BroadcastWorld(0, &(gpar.seed), sizeof(gpar.seed));
Scheduler::ObjFunc memPeak = [this](const Program &p)->Size
{
return memoryNeeded(p);
};
Scheduler scheduler(graph, memPeak, gpar);
gen = 0;
scheduler.initPopulation();
LOG(Message) << "Start: " << sizeString(scheduler.getMinValue())
<< std::endl;
2017-12-13 16:36:15 +00:00
do
{
scheduler.nextGeneration();
if (gen != 0)
{
if (prevPeak == scheduler.getMinValue())
{
nCstPeak++;
}
else
{
nCstPeak = 0;
}
}
prevPeak = scheduler.getMinValue();
if (gen % 10 == 0)
{
LOG(Message) << "Generation " << gen << ": "
<< sizeString(scheduler.getMinValue()) << std::endl;
2017-12-13 16:36:15 +00:00
}
gen++;
} while ((gen < par.maxGen) and (nCstPeak < par.maxCstGen));
return scheduler.getMinSchedule();
}
2017-12-13 13:44:23 +00:00
// general execution ///////////////////////////////////////////////////////////
#define BIG_SEP "================"
#define SEP "----------------"
#define SMALL_SEP "................"
2017-12-13 13:44:23 +00:00
#define MEM_MSG(size) sizeString(size)
void VirtualMachine::executeProgram(const Program &p)
2017-12-13 13:44:23 +00:00
{
Size memPeak = 0, sizeBefore, sizeAfter;
GarbageSchedule freeProg;
// build garbage collection schedule
LOG(Debug) << "Building garbage collection schedule..." << std::endl;
freeProg = makeGarbageSchedule(p);
for (unsigned int i = 0; i < freeProg.size(); ++i)
{
std::string msg = "";
for (auto &a: freeProg[i])
{
msg += env().getObjectName(a) + " ";
}
msg += "]";
LOG(Debug) << std::setw(4) << i + 1 << ": [" << msg << std::endl;
}
2017-12-13 13:44:23 +00:00
// program execution
LOG(Debug) << "Executing program..." << std::endl;
totalTime_ = GridTime::zero();
2017-12-13 13:44:23 +00:00
for (unsigned int i = 0; i < p.size(); ++i)
{
// execute module
LOG(Message) << SEP << " Measurement step " << i + 1 << "/"
2017-12-14 21:14:10 +00:00
<< p.size() << " (module '" << module_[p[i]].name
<< "') " << SEP << std::endl;
2018-08-10 16:07:30 +01:00
LOG(Message) << SMALL_SEP << " Module execution" << std::endl;
currentModule_ = p[i];
2017-12-13 13:44:23 +00:00
(*module_[p[i]].data)();
currentModule_ = -1;
2017-12-13 13:44:23 +00:00
sizeBefore = env().getTotalSize();
2018-08-10 16:07:30 +01:00
// print time profile after execution
LOG(Message) << SMALL_SEP << " Timings" << std::endl;
std::map<std::string, GridTime> ctiming, gtiming;
GridTime total;
ctiming = module_[p[i]].data->getTimings();
total = ctiming.at("_total");
gtiming["total"] = ctiming["_total"]; ctiming.erase("_total");
gtiming["setup"] = ctiming["_setup"]; ctiming.erase("_setup");
gtiming["execution"] = ctiming["_execute"]; ctiming.erase("_execute");
LOG(Message) << "* GLOBAL TIMERS" << std::endl;
printTimeProfile(gtiming, total);
if (!ctiming.empty())
{
LOG(Message) << "* CUSTOM TIMERS" << std::endl;
printTimeProfile(ctiming, total);
}
timeProfile_[module_[p[i]].name] = total;
totalTime_ += total;
2017-12-13 13:44:23 +00:00
// print used memory after execution
2018-08-10 16:07:30 +01:00
LOG(Message) << SMALL_SEP << " Memory management" << std::endl;
2017-12-13 13:44:23 +00:00
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeBefore)
<< std::endl;
if (sizeBefore > memPeak)
{
memPeak = sizeBefore;
}
// garbage collection for step i
LOG(Message) << "Garbage collection..." << std::endl;
for (auto &j: freeProg[i])
{
env().freeObject(j);
}
// print used memory after garbage collection if necessary
sizeAfter = env().getTotalSize();
if (sizeBefore != sizeAfter)
{
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeAfter)
<< std::endl;
}
else
{
LOG(Message) << "Nothing to free" << std::endl;
}
}
// print total time profile
LOG(Message) << SEP << " Measurement time profile" << SEP << std::endl;
LOG(Message) << "Total measurement time: " << totalTime_ << " us" << std::endl;
LOG(Message) << SMALL_SEP << " Module breakdown" << std::endl;
printTimeProfile(timeProfile_, totalTime_);
}
void VirtualMachine::executeProgram(const std::vector<std::string> &p)
{
2017-12-13 16:36:15 +00:00
Program pAddress;
2017-12-13 13:44:23 +00:00
for (auto &n: p)
{
pAddress.push_back(getModuleAddress(n));
}
executeProgram(pAddress);
}