2017-07-21 12:39:03 +01:00
|
|
|
/*************************************************************************************
|
|
|
|
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
|
|
|
|
Source file: ./lib/algorithms/iterative/MinimalResidual.h
|
|
|
|
|
|
|
|
Copyright (C) 2015
|
|
|
|
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
|
|
directory
|
|
|
|
*************************************************************************************/
|
|
|
|
/* END LEGAL */
|
|
|
|
#ifndef GRID_MINIMAL_RESIDUAL_H
|
|
|
|
#define GRID_MINIMAL_RESIDUAL_H
|
|
|
|
|
|
|
|
namespace Grid {
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
// Base classes for iterative processes based on operators
|
|
|
|
// single input vec, single output vec.
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
template <class Field>
|
|
|
|
class MinimalResidual : public OperatorFunction<Field> {
|
|
|
|
public:
|
|
|
|
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
|
|
|
// Defaults true.
|
|
|
|
RealD Tolerance;
|
|
|
|
Integer MaxIterations;
|
|
|
|
Integer IterationsToComplete; //Number of iterations the MR took to finish. Filled in upon completion
|
|
|
|
|
|
|
|
MinimalResidual(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
|
|
: Tolerance(tol),
|
|
|
|
MaxIterations(maxit),
|
|
|
|
ErrorOnNoConverge(err_on_no_conv){};
|
|
|
|
|
|
|
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
|
|
|
|
Field &psi) {
|
|
|
|
psi.checkerboard = src.checkerboard; // Check
|
|
|
|
conformable(psi, src);
|
|
|
|
|
2017-10-25 09:38:26 +01:00
|
|
|
/////
|
|
|
|
RealD cp, c, a, d, b, ssq, qq, b_pred;
|
|
|
|
|
|
|
|
Field p(src);
|
|
|
|
Field mmp(src);
|
|
|
|
Field r(src);
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
RealD guess = norm2(psi);
|
|
|
|
assert(std::isnan(guess) == 0);
|
|
|
|
/////
|
|
|
|
|
2017-07-21 12:39:03 +01:00
|
|
|
Field p {src};
|
|
|
|
Field matrixTimesPsi {src};
|
|
|
|
Field r {src};
|
|
|
|
|
|
|
|
RealD alpha {};
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
RealD guess = norm2(psi);
|
|
|
|
assert(std::isnan(guess) == 0);
|
|
|
|
|
|
|
|
Linop.HermOp(psi, matrixTimesPsi);
|
|
|
|
|
|
|
|
r = src - matrixTimesPsi;
|
|
|
|
|
|
|
|
Linop.HermOp(r, p);
|
|
|
|
|
|
|
|
alpha = innerProduct(p,r) / innerProduct(p,p);
|
|
|
|
psi = psi + alpha * r;
|
|
|
|
r = r - alpha * p;
|
|
|
|
|
|
|
|
Linop.HermOp(r, p);
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// RealD cp, c, a, d, b, ssq, qq, b_pred;
|
|
|
|
|
|
|
|
Field p(src);
|
|
|
|
Field matrixTimesPsi(src);
|
|
|
|
// Field r(src);
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
RealD guess = norm2(psi);
|
|
|
|
assert(std::isnan(guess) == 0);
|
|
|
|
|
|
|
|
|
|
|
|
Linop.HermOpAndNorm(psi, matrixTimesPsi, d, b);
|
|
|
|
|
|
|
|
|
|
|
|
r = src - matrixTimesPsi;
|
|
|
|
p = matrixTimesPsi;
|
|
|
|
|
|
|
|
a = norm2(p);
|
|
|
|
cp = a;
|
|
|
|
ssq = norm2(src);
|
|
|
|
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: guess " << guess << std::endl;
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: src " << ssq << std::endl;
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: mp " << d << std::endl;
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: matrixTimesPsi " << b << std::endl;
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: cp,r " << cp << std::endl;
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: p " << a << std::endl;
|
|
|
|
|
|
|
|
RealD rsq = Tolerance * Tolerance * ssq;
|
|
|
|
|
|
|
|
// Check if guess is really REALLY good :)
|
|
|
|
if (cp <= rsq) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: k=0 residual " << cp << " target " << rsq
|
|
|
|
<< std::endl;
|
|
|
|
|
|
|
|
GridStopWatch LinalgTimer;
|
|
|
|
GridStopWatch MatrixTimer;
|
|
|
|
GridStopWatch SolverTimer;
|
|
|
|
|
|
|
|
SolverTimer.Start();
|
|
|
|
int k;
|
|
|
|
for (k = 1; k <= MaxIterations; k++) {
|
|
|
|
c = cp;
|
|
|
|
|
|
|
|
MatrixTimer.Start();
|
|
|
|
Linop.HermOpAndNorm(p, matrixTimesPsi, d, qq);
|
|
|
|
MatrixTimer.Stop();
|
|
|
|
|
|
|
|
LinalgTimer.Start();
|
|
|
|
// RealD qqck = norm2(matrixTimesPsi);
|
|
|
|
// ComplexD dck = innerProduct(p,matrixTimesPsi);
|
|
|
|
|
|
|
|
a = c / d;
|
|
|
|
b_pred = a * (a * qq - d) / c;
|
|
|
|
|
|
|
|
cp = axpy_norm(r, -a, matrixTimesPsi, r);
|
|
|
|
b = cp / c;
|
|
|
|
|
|
|
|
// Fuse these loops ; should be really easy
|
|
|
|
psi = a * p + psi;
|
|
|
|
p = p * b + r;
|
|
|
|
|
|
|
|
LinalgTimer.Stop();
|
|
|
|
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
|
|
|
<< " residual " << cp << " target " << rsq << std::endl;
|
|
|
|
|
|
|
|
// Stopping condition
|
|
|
|
if (cp <= rsq) {
|
|
|
|
SolverTimer.Stop();
|
|
|
|
Linop.HermOpAndNorm(psi, matrixTimesPsi, d, qq);
|
|
|
|
p = matrixTimesPsi - src;
|
|
|
|
|
|
|
|
RealD matrixTimesPsiNorm = sqrt(norm2(matrixTimesPsi));
|
|
|
|
RealD psinorm = sqrt(norm2(psi));
|
|
|
|
RealD srcnorm = sqrt(norm2(src));
|
|
|
|
RealD resnorm = sqrt(norm2(p));
|
|
|
|
RealD true_residual = resnorm / srcnorm;
|
|
|
|
|
|
|
|
std::cout << GridLogMessage
|
|
|
|
<< "MinimalResidual: Converged on iteration " << k << std::endl;
|
|
|
|
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
|
|
|
|
<< " true residual " << true_residual << " target "
|
|
|
|
<< Tolerance << std::endl;
|
|
|
|
std::cout << GridLogMessage << "Time elapsed: Iterations "
|
|
|
|
<< SolverTimer.Elapsed() << " Matrix "
|
|
|
|
<< MatrixTimer.Elapsed() << " Linalg "
|
|
|
|
<< LinalgTimer.Elapsed();
|
|
|
|
std::cout << std::endl;
|
|
|
|
|
|
|
|
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
|
|
|
IterationsToComplete = k;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
|
|
|
|
<< std::endl;
|
|
|
|
if (ErrorOnNoConverge) assert(0);
|
|
|
|
IterationsToComplete = k;
|
|
|
|
}
|
2017-10-25 09:38:26 +01:00
|
|
|
|
|
|
|
//! Minimal-residual (MR) algorithm for a generic Linear Operator
|
|
|
|
/*! \ingroup invert
|
|
|
|
* This subroutine uses the Minimal Residual (MR) algorithm to determine
|
|
|
|
* the solution of the set of linear equations. Here we allow M to be nonhermitian.
|
|
|
|
*
|
|
|
|
* M . Psi = src
|
|
|
|
*
|
|
|
|
* Algorithm:
|
|
|
|
*
|
|
|
|
* Psi[0] Argument
|
|
|
|
* r[0] := src - M . Psi[0] ; Initial residual
|
|
|
|
* IF |r[0]| <= RsdCG |src| THEN RETURN; Converged?
|
|
|
|
* FOR k FROM 1 TO MaxCG DO MR iterations
|
|
|
|
* a[k-1] := <M.r[k-1],r[k-1]> / <M.r[k-1],M.r[k-1]> ;
|
|
|
|
* ap[k-1] := MRovpar * a[k] ; Overrelaxtion step
|
|
|
|
* Psi[k] += ap[k-1] r[k-1] ; New solution vector
|
|
|
|
* r[k] -= ap[k-1] A . r[k-1] ; New residual
|
|
|
|
* IF |r[k]| <= RsdCG |src| THEN RETURN; Converged?
|
|
|
|
|
|
|
|
* Arguments:
|
|
|
|
|
|
|
|
* \param M Linear Operator (Read)
|
|
|
|
* \param src Source (Read)
|
|
|
|
* \param psi Solution (Modify)
|
|
|
|
* \param RsdCG MR residual accuracy (Read)
|
|
|
|
* \param MRovpar Overrelaxation parameter (Read)
|
|
|
|
* \param MaxIterations Maximum MR iterations (Read)
|
|
|
|
|
|
|
|
* Local Variables:
|
|
|
|
|
|
|
|
* r Residual vector
|
|
|
|
* cp | r[k] |**2
|
|
|
|
* c | r[k-1] |**2
|
|
|
|
* k MR iteration counter
|
|
|
|
* a a[k]
|
|
|
|
* d < M.r[k], M.r[k] >
|
|
|
|
* R_Aux Temporary for M.Psi
|
|
|
|
* Mr Temporary for M.r
|
|
|
|
|
|
|
|
* Global Variables:
|
|
|
|
|
|
|
|
* MaxIterations Maximum number of MR iterations allowed
|
|
|
|
* RsdCG Maximum acceptable MR residual (relative to source)
|
|
|
|
*
|
|
|
|
* Subroutines:
|
|
|
|
*
|
|
|
|
* M Apply matrix to vector
|
|
|
|
*
|
|
|
|
* @{
|
|
|
|
*/
|
|
|
|
|
|
|
|
// TODO: figure out what isign from chroma is supposed to do
|
|
|
|
void tmpImplFromChroma(LinearOperatorBase<Field> &Linop, const Field &src,
|
|
|
|
Field &psi) {
|
|
|
|
psi.checkerboard = src.checkerboard;
|
|
|
|
conformable(psi, src);
|
|
|
|
|
|
|
|
Complex a, c;
|
|
|
|
Complex c;
|
|
|
|
RealD d;
|
|
|
|
|
|
|
|
Field Mr(src);
|
|
|
|
Field r(src);
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
RealD guess = norm2(psi);
|
|
|
|
assert(std::isnan(guess) == 0);
|
|
|
|
|
|
|
|
RealD ssq = norm2(src); // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "source squared"
|
|
|
|
RealD rsd_sq = Tolerance * Tolerance * ssq; // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "residual squared"
|
|
|
|
|
|
|
|
/* r[0] := src - M . Psi[0] */
|
|
|
|
/* r := M . Psi */
|
|
|
|
M(Mr, psi, isign); // flopcount.addFlops(M.nFlops());
|
|
|
|
|
|
|
|
r = src - Mr; // flopcount.addSiteFlops(2*Nc*Ns,s);
|
|
|
|
|
|
|
|
RealD cp = norm2(r); /* Cp = |r[0]|^2 */ /* 2 Nc Ns flops */ // flopcount.addSiteFlops(4*Nc*Ns, s);
|
|
|
|
|
|
|
|
if (cp <= rsd_sq) { /* IF |r[0]| <= Tolerance|src| THEN RETURN; */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cout << GridLogIterative << std::setprecision(4)
|
|
|
|
<< "MinimalResidual: k=0 residual " << cp << " target " << rsq_sq << std::endl;
|
|
|
|
|
|
|
|
/* FOR k FROM 1 TO MaxIterations DO */
|
|
|
|
auto k = 0;
|
|
|
|
while( (k < MaxIterations) && (cp > rsd_sq) )
|
|
|
|
{
|
|
|
|
++k;
|
|
|
|
|
|
|
|
/* a[k-1] := < M.r[k-1], r[k-1] >/ < M.r[k-1], M.r[k-1] > ; */
|
|
|
|
|
|
|
|
M(Mr, r, isign); /* Mr = M * r */ // flopcount.addFlops(M.nFlops());
|
|
|
|
|
|
|
|
c = innerProduct(Mr, r); /* c = < M.r, r > */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
|
|
|
|
|
|
d = norm2(Mr); /* d = | M.r | ** 2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
|
|
|
|
|
|
a = c / d; /* a = c / d */
|
|
|
|
|
|
|
|
a = a * MRovpar; /* a[k-1] *= MRovpar ; */
|
|
|
|
|
|
|
|
|
|
|
|
psi = psi + r * a; /* Psi[k] += a[k-1] r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
|
|
|
|
|
|
r = r - Mr * a; /* r[k] -= a[k-1] M . r[k-1] ; */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
|
|
|
|
|
|
cp = norm2(r); /* cp = | r[k] |**2 */ // flopcount.addSiteFlops(4*Nc*Ns,s);
|
|
|
|
|
|
|
|
// std::cout << "InvMR: k = " << k << " cp = " << cp << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
IterationsToComplete = k;
|
|
|
|
|
|
|
|
res.resid = sqrt(cp);
|
|
|
|
swatch.stop();
|
|
|
|
std::cout << "InvMR: k = " << k << " cp = " << cp << endl;
|
|
|
|
// flopcount.report("invmr", swatch.getTimeInSeconds());
|
|
|
|
|
|
|
|
// Compute the actual residual
|
|
|
|
{
|
|
|
|
M(Mr, psi, isign);
|
|
|
|
RealD actual_res = norm2(src- Mr);
|
|
|
|
res.resid = sqrt(actual_res);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( IterationsToComplete == MaxIterations )
|
|
|
|
std::cerr << "Nonconvergence Warning" << endl;
|
|
|
|
|
|
|
|
END_CODE();
|
|
|
|
return res;
|
|
|
|
|
|
|
|
}
|
2017-07-21 12:39:03 +01:00
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|