1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/tests/core/Test_gparity.cc

313 lines
12 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_gparity.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
2016-07-07 22:31:07 +01:00
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
//typedef GparityDomainWallFermionD GparityDiracOp;
//typedef DomainWallFermionD StandardDiracOp;
//#define DOP_PARAMS
typedef GparityMobiusFermionD GparityDiracOp;
typedef MobiusFermionD StandardDiracOp;
#define DOP_PARAMS ,1.5, 0.5
typedef typename GparityDiracOp::FermionField GparityFermionField;
typedef typename GparityDiracOp::GaugeField GparityGaugeField;
typedef typename GparityFermionField::vector_type vComplexType;
typedef typename StandardDiracOp::FermionField StandardFermionField;
typedef typename StandardDiracOp::GaugeField StandardGaugeField;
enum{ same_vComplex = std::is_same<vComplexType, typename StandardFermionField::vector_type>::value };
static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIMD complex type");
int main (int argc, char ** argv)
{
int nu = 0;
Grid_init(&argc,&argv);
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--Gparity-dir"){
std::stringstream ss; ss << argv[i+1]; ss >> nu;
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
}
}
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Testing Gparity Dirac operator "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexType::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
const int Ls=4;
//const int L =4;
//std::vector<int> latt_2f(Nd,L);
std::vector<int> latt_2f = GridDefaultLatt();
std::vector<int> latt_1f(latt_2f); latt_1f[nu] = 2*latt_2f[nu];
int L = latt_2f[nu];
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexType::Nsimd());
std::cout << GridLogMessage << "SIMD layout: ";
for(int i=0;i<simd_layout.size();i++) std::cout << simd_layout[i] << " ";
std::cout << std::endl;
std::vector<int> mpi_layout = GridDefaultMpi(); //node layout
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
GridCartesian * FGrid_1f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
GridCartesian * UGrid_2f = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
GridCartesian * FGrid_2f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
GparityGaugeField Umu_2f(UGrid_2f);
SU3::HotConfiguration(RNG4_2f,Umu_2f);
StandardFermionField src (FGrid_2f);
StandardFermionField tmpsrc(FGrid_2f);
GparityFermionField src_2f(FGrid_2f);
StandardFermionField src_1f(FGrid_1f);
// Replicate fermion source
random(RNG5_2f,src);
PokeIndex<0>(src_2f,src,0);
tmpsrc=src*2.0;
PokeIndex<0>(src_2f,tmpsrc,1);
StandardFermionField result_1f(FGrid_1f); result_1f=zero;
StandardGaugeField Umu_1f(UGrid_1f);
Replicate(Umu_2f,Umu_1f);
//Coordinate grid for reference
LatticeInteger xcoor_1f(UGrid_1f);
LatticeCoordinate(xcoor_1f,nu);
//Copy-conjugate the gauge field
//First C-shift the lattice by Lx/2
{
StandardGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
Umu_1f = where( xcoor_1f >= Integer(L), Umu_shift, Umu_1f );
// hack test to check the same
Replicate(Umu_2f,Umu_shift);
Umu_shift=Umu_shift-Umu_1f;
cout << GridLogMessage << "Umu diff " << norm2(Umu_shift)<<std::endl;
//Make the gauge field antiperiodic in nu-direction
decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
Unu = where(xcoor_1f == Integer(2*L-1), -Unu, Unu);
PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
}
//Coordinate grid for reference
LatticeInteger xcoor_1f5(FGrid_1f);
LatticeCoordinate(xcoor_1f5,1+nu);
Replicate(src,src_1f);
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
RealD mass=0.0;
RealD M5=1.8;
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
StandardFermionField src_o_1f(FrbGrid_1f);
StandardFermionField result_o_1f(FrbGrid_1f);
pickCheckerboard(Odd,src_o_1f,src_1f);
result_o_1f=zero;
SchurDiagMooeeOperator<StandardDiracOp,StandardFermionField> HermOpEO(Ddwf);
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
CG(HermOpEO,src_o_1f,result_o_1f);
// const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
GparityDiracOp::ImplParams params;
params.twists = twists;
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
for(int disp=-1;disp<=1;disp+=2)
for(int mu=0;mu<5;mu++)
{
GparityFermionField Dsrc_2f(FGrid_2f);
StandardFermionField Dsrc_1f(FGrid_1f);
StandardFermionField Dsrc_2freplica(FGrid_1f);
StandardFermionField Dsrc_2freplica0(FGrid_1f);
StandardFermionField Dsrc_2freplica1(FGrid_1f);
if ( mu ==0 ) {
std::cout << GridLogMessage<< " Cross checking entire hopping term"<<std::endl;
GPDdwf.Dhop(src_2f,Dsrc_2f,DaggerNo);
Ddwf.Dhop(src_1f,Dsrc_1f,DaggerNo);
} else {
std::cout << GridLogMessage<< " Cross checking mu="<<mu<< " disp="<< disp<<std::endl;
GPDdwf.DhopDir(src_2f,Dsrc_2f,mu,disp);
Ddwf.DhopDir(src_1f,Dsrc_1f,mu,disp);
}
std::cout << GridLogMessage << "S norms "<< norm2(src_2f) << " " << norm2(src_1f) <<std::endl;
std::cout << GridLogMessage << "D norms "<< norm2(Dsrc_2f)<< " " << norm2(Dsrc_1f) <<std::endl;
StandardFermionField Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
StandardFermionField Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
// Dsrc_2f1 = Dsrc_2f1 - Dsrc_2f0;
// std::cout << GridLogMessage << " Cross check two halves " <<norm2(Dsrc_2f1)<<std::endl;
Replicate(Dsrc_2f0,Dsrc_2freplica0);
Replicate(Dsrc_2f1,Dsrc_2freplica1);
Dsrc_2freplica = where( xcoor_1f5 >= Integer(L), Dsrc_2freplica1,Dsrc_2freplica0 );
Dsrc_2freplica = Dsrc_2freplica - Dsrc_1f ;
std::cout << GridLogMessage << " Cross check against doubled latt " <<norm2(Dsrc_2freplica)<<std::endl;
// std::cout << Dsrc_2f <<std::endl;
}
{
GparityFermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
GparityFermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
GparityFermionField chi_e (FrbGrid_2f);
GparityFermionField chi_o (FrbGrid_2f);
GparityFermionField dchi_e (FrbGrid_2f);
GparityFermionField dchi_o (FrbGrid_2f);
GparityFermionField phi_e (FrbGrid_2f);
GparityFermionField phi_o (FrbGrid_2f);
GparityFermionField dphi_e (FrbGrid_2f);
GparityFermionField dphi_o (FrbGrid_2f);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
GPDdwf.Meooe(chi_e,dchi_o);
GPDdwf.Meooe(chi_o,dchi_e);
GPDdwf.MeooeDag(phi_e,dphi_o);
GPDdwf.MeooeDag(phi_o,dphi_e);
ComplexD pDce = innerProduct(phi_e,dchi_e);
ComplexD pDco = innerProduct(phi_o,dchi_o);
ComplexD cDpe = innerProduct(chi_e,dphi_e);
ComplexD cDpo = innerProduct(chi_o,dphi_o);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDce-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDco-conj(cDpe) <<std::endl;
}
GparityFermionField result_2f(FGrid_2f); result_2f=zero;
GparityFermionField src_o_2f(FrbGrid_2f);
GparityFermionField result_o_2f(FrbGrid_2f);
pickCheckerboard(Odd,src_o_2f,src_2f);
result_o_2f=zero;
ConjugateGradient<GparityFermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDiracOp,GparityFermionField> HermOpEO2f(GPDdwf);
CG2f(HermOpEO2f,src_o_2f,result_o_2f);
std::cout << "2f cb "<<result_o_2f.checkerboard<<std::endl;
std::cout << "1f cb "<<result_o_1f.checkerboard<<std::endl;
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
StandardFermionField res0o (FrbGrid_2f);
StandardFermionField res1o (FrbGrid_2f);
StandardFermionField res0 (FGrid_2f);
StandardFermionField res1 (FGrid_2f);
res0=zero;
res1=zero;
res0o = PeekIndex<0>(result_o_2f,0);
res1o = PeekIndex<0>(result_o_2f,1);
std::cout << "res cb "<<res0o.checkerboard<<std::endl;
std::cout << "res cb "<<res1o.checkerboard<<std::endl;
setCheckerboard(res0,res0o);
setCheckerboard(res1,res1o);
StandardFermionField replica (FGrid_1f);
StandardFermionField replica0(FGrid_1f);
StandardFermionField replica1(FGrid_1f);
Replicate(res0,replica0);
Replicate(res1,replica1);
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
replica0 = zero;
setCheckerboard(replica0,result_o_1f);
std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
replica = replica - replica0;
std::cout << "Norm2 of difference in solutions is " <<norm2(replica)<<std::endl;
Grid_finalize();
}