1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/lib/parallelIO/BinaryIO.h

681 lines
20 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/BinaryIO.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BINARY_IO_H
#define GRID_BINARY_IO_H
2015-11-04 10:27:44 +00:00
#ifdef HAVE_ENDIAN_H
#include <endian.h>
#endif
#include <arpa/inet.h>
2015-11-04 10:27:44 +00:00
#include <algorithm>
// 64bit endian swap is a portability pain
#ifndef __has_builtin // Optional of course.
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
#endif
#if HAVE_DECL_BE64TOH
#undef Grid_ntohll
#define Grid_ntohll be64toh
#endif
#if HAVE_DECL_NTOHLL
#undef Grid_ntohll
#define Grid_ntohll ntohll
#endif
#ifndef Grid_ntohll
#if BYTE_ORDER == BIG_ENDIAN
#define Grid_ntohll(A) (A)
#else
#if __has_builtin(__builtin_bswap64)
#define Grid_ntohll(A) __builtin_bswap64(A)
#else
#error
#endif
#endif
#endif
namespace Grid {
// A little helper
inline void removeWhitespace(std::string &key)
{
key.erase(std::remove_if(key.begin(), key.end(), ::isspace),key.end());
}
class BinaryIO {
public:
// Network is big endian
static inline void htobe32_v(void *file_object,uint32_t bytes){ be32toh_v(file_object,bytes);}
static inline void htobe64_v(void *file_object,uint32_t bytes){ be64toh_v(file_object,bytes);}
static inline void htole32_v(void *file_object,uint32_t bytes){ le32toh_v(file_object,bytes);}
static inline void htole64_v(void *file_object,uint32_t bytes){ le64toh_v(file_object,bytes);}
static inline void be32toh_v(void *file_object,uint32_t bytes)
{
uint32_t * f = (uint32_t *)file_object;
for(int i=0;i*sizeof(uint32_t)<bytes;i++){
f[i] = ntohl(f[i]);
}
}
// LE must Swap and switch to host
static inline void le32toh_v(void *file_object,uint32_t bytes)
{
uint32_t *fp = (uint32_t *)file_object;
uint32_t f;
for(int i=0;i*sizeof(uint32_t)<bytes;i++){
f = fp[i];
// got network order and the network to host
f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
fp[i] = ntohl(f);
}
}
// BE is same as network
static inline void be64toh_v(void *file_object,uint32_t bytes)
{
uint64_t * f = (uint64_t *)file_object;
for(int i=0;i*sizeof(uint64_t)<bytes;i++){
f[i] = Grid_ntohll(f[i]);
}
}
// LE must swap and switch;
static inline void le64toh_v(void *file_object,uint32_t bytes)
{
uint64_t *fp = (uint64_t *)file_object;
uint64_t f,g;
for(int i=0;i*sizeof(uint64_t)<bytes;i++){
f = fp[i];
// got network order and the network to host
g = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
g = g << 32;
f = f >> 32;
g|= ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
fp[i] = Grid_ntohll(g);
}
}
template<class vobj,class fobj,class munger> static inline void Uint32Checksum(Lattice<vobj> &lat,munger munge,uint32_t &csum)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = lat._grid ;
std::cout <<GridLogMessage<< "Uint32Checksum "<<norm2(lat)<<std::endl;
sobj siteObj;
fobj fileObj;
csum = 0;
std::vector<int> lcoor;
for(int l=0;l<grid->lSites();l++){
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(lcoor,l,grid->_ldimensions);
peekLocalSite(siteObj,lat,lcoor);
munge(siteObj,fileObj,csum);
}
grid->GlobalSum(csum);
}
static inline void Uint32Checksum(uint32_t *buf,uint32_t buf_size_bytes,uint32_t &csum)
{
for(int i=0;i*sizeof(uint32_t)<buf_size_bytes;i++){
csum=csum+buf[i];
}
}
template<class vobj,class fobj,class munger>
static inline uint32_t readObjectSerial(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string &format)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Umu._grid;
std::cout<< GridLogMessage<< "Serial read I/O "<< file<< std::endl;
2016-03-16 09:30:16 +00:00
GridStopWatch timer; timer.Start();
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
// Find the location of each site and send to primary node
// Take loop order from Chroma; defines loop order now that NERSC doc no longer
// available (how short sighted is that?)
std::ifstream fin(file,std::ios::binary|std::ios::in);
fin.seekg(offset);
Umu = zero;
uint32_t csum=0;
2016-03-16 09:30:16 +00:00
uint64_t bytes=0;
fobj file_object;
sobj munged;
for(int t=0;t<grid->_fdimensions[3];t++){
for(int z=0;z<grid->_fdimensions[2];z++){
for(int y=0;y<grid->_fdimensions[1];y++){
for(int x=0;x<grid->_fdimensions[0];x++){
std::vector<int> site({x,y,z,t});
if ( grid->IsBoss() ) {
fin.read((char *)&file_object,sizeof(file_object));
2016-03-16 09:30:16 +00:00
bytes += sizeof(file_object);
if(ieee32big) be32toh_v((void *)&file_object,sizeof(file_object));
if(ieee32) le32toh_v((void *)&file_object,sizeof(file_object));
if(ieee64big) be64toh_v((void *)&file_object,sizeof(file_object));
if(ieee64) le64toh_v((void *)&file_object,sizeof(file_object));
munge(file_object,munged,csum);
}
// The boss who read the file has their value poked
pokeSite(munged,Umu,site);
}}}}
2016-03-16 09:30:16 +00:00
timer.Stop();
std::cout<<GridLogPerformance<<"readObjectSerial: read "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/ (double)timer.useconds() <<" MB/s " <<std::endl;
return csum;
}
template<class vobj,class fobj,class munger>
static inline uint32_t writeObjectSerial(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string & format)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Umu._grid;
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
//////////////////////////////////////////////////
// Serialise through node zero
//////////////////////////////////////////////////
std::cout<< GridLogMessage<< "Serial write I/O "<< file<<std::endl;
2016-03-16 09:30:16 +00:00
GridStopWatch timer; timer.Start();
std::ofstream fout;
if ( grid->IsBoss() ) {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
fout.seekp(offset);
}
2016-03-16 09:30:16 +00:00
uint64_t bytes=0;
uint32_t csum=0;
fobj file_object;
sobj unmunged;
for(int t=0;t<grid->_fdimensions[3];t++){
for(int z=0;z<grid->_fdimensions[2];z++){
for(int y=0;y<grid->_fdimensions[1];y++){
for(int x=0;x<grid->_fdimensions[0];x++){
std::vector<int> site({x,y,z,t});
// peek & write
peekSite(unmunged,Umu,site);
munge(unmunged,file_object,csum);
if ( grid->IsBoss() ) {
if(ieee32big) htobe32_v((void *)&file_object,sizeof(file_object));
if(ieee32) htole32_v((void *)&file_object,sizeof(file_object));
if(ieee64big) htobe64_v((void *)&file_object,sizeof(file_object));
if(ieee64) htole64_v((void *)&file_object,sizeof(file_object));
2016-03-16 09:30:16 +00:00
// NB could gather an xstrip as an optimisation.
fout.write((char *)&file_object,sizeof(file_object));
2016-03-16 09:30:16 +00:00
bytes+=sizeof(file_object);
}
}}}}
2016-03-16 09:30:16 +00:00
timer.Stop();
std::cout<<GridLogPerformance<<"writeObjectSerial: wrote "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
return csum;
}
static inline uint32_t writeRNGSerial(GridSerialRNG &serial,GridParallelRNG &parallel,std::string file,int offset)
{
typedef typename GridSerialRNG::RngStateType RngStateType;
const int RngStateCount = GridSerialRNG::RngStateCount;
GridBase *grid = parallel._grid;
int gsites = grid->_gsites;
//////////////////////////////////////////////////
// Serialise through node zero
//////////////////////////////////////////////////
std::cout<< GridLogMessage<< "Serial RNG write I/O "<< file<<std::endl;
std::ofstream fout;
if ( grid->IsBoss() ) {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
fout.seekp(offset);
}
uint32_t csum=0;
std::vector<RngStateType> saved(RngStateCount);
int bytes = sizeof(RngStateType)*saved.size();
std::vector<int> gcoor;
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
grid->GlobalIndexToGlobalCoor(gidx,gcoor);
grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
int l_idx=parallel.generator_idx(o_idx,i_idx);
if( rank == grid->ThisRank() ){
// std::cout << "rank" << rank<<" Getting state for index "<<l_idx<<std::endl;
parallel.GetState(saved,l_idx);
}
grid->Broadcast(rank,(void *)&saved[0],bytes);
if ( grid->IsBoss() ) {
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fout.write((char *)&saved[0],bytes);
}
}
if ( grid->IsBoss() ) {
serial.GetState(saved,0);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fout.write((char *)&saved[0],bytes);
}
grid->Broadcast(0,(void *)&csum,sizeof(csum));
return csum;
}
static inline uint32_t readRNGSerial(GridSerialRNG &serial,GridParallelRNG &parallel,std::string file,int offset)
{
typedef typename GridSerialRNG::RngStateType RngStateType;
const int RngStateCount = GridSerialRNG::RngStateCount;
GridBase *grid = parallel._grid;
int gsites = grid->_gsites;
//////////////////////////////////////////////////
// Serialise through node zero
//////////////////////////////////////////////////
std::cout<< GridLogMessage<< "Serial RNG read I/O "<< file<<std::endl;
std::ifstream fin(file,std::ios::binary|std::ios::in);
fin.seekg(offset);
uint32_t csum=0;
std::vector<RngStateType> saved(RngStateCount);
int bytes = sizeof(RngStateType)*saved.size();
std::vector<int> gcoor;
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
grid->GlobalIndexToGlobalCoor(gidx,gcoor);
grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
int l_idx=parallel.generator_idx(o_idx,i_idx);
if ( grid->IsBoss() ) {
fin.read((char *)&saved[0],bytes);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
}
grid->Broadcast(0,(void *)&saved[0],bytes);
if( rank == grid->ThisRank() ){
parallel.SetState(saved,l_idx);
}
}
if ( grid->IsBoss() ) {
fin.read((char *)&saved[0],bytes);
serial.SetState(saved,0);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
}
grid->Broadcast(0,(void *)&csum,sizeof(csum));
return csum;
}
template<class vobj,class fobj,class munger>
static inline uint32_t readObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string &format)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Umu._grid;
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
// Take into account block size of parallel file systems want about
// 4-16MB chunks.
// Ideally one reader/writer per xy plane and read these contiguously
// with comms from nominated I/O nodes.
std::ifstream fin;
int nd = grid->_ndimension;
std::vector<int> parallel(nd,1);
std::vector<int> ioproc (nd);
std::vector<int> start(nd);
std::vector<int> range(nd);
for(int d=0;d<nd;d++){
assert(grid->CheckerBoarded(d) == 0);
}
uint64_t slice_vol = 1;
int IOnode = 1;
for(int d=0;d<grid->_ndimension;d++) {
if ( d == 0 ) parallel[d] = 0;
if (parallel[d]) {
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
} else {
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
}
slice_vol = slice_vol * range[d];
}
{
uint32_t tmp = IOnode;
grid->GlobalSum(tmp);
std::cout<< std::dec ;
std::cout<< GridLogMessage<< "Parallel read I/O to "<< file << " with " <<tmp<< " IOnodes for subslice ";
for(int d=0;d<grid->_ndimension;d++){
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
}
std::cout << std::endl;
}
2016-03-16 09:30:16 +00:00
GridStopWatch timer; timer.Start();
uint64_t bytes=0;
int myrank = grid->ThisRank();
int iorank = grid->RankFromProcessorCoor(ioproc);
if ( IOnode ) {
fin.open(file,std::ios::binary|std::ios::in);
}
//////////////////////////////////////////////////////////
// Find the location of each site and send to primary node
// Take loop order from Chroma; defines loop order now that NERSC doc no longer
// available (how short sighted is that?)
//////////////////////////////////////////////////////////
Umu = zero;
static uint32_t csum=0;
fobj fileObj;
static sobj siteObj; // Static to place in symmetric region for SHMEM
// need to implement these loops in Nd independent way with a lexico conversion
for(int tlex=0;tlex<slice_vol;tlex++){
std::vector<int> tsite(nd); // temporary mixed up site
std::vector<int> gsite(nd);
std::vector<int> lsite(nd);
std::vector<int> iosite(nd);
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(tsite,tlex,range);
for(int d=0;d<nd;d++){
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
}
/////////////////////////
// Get the rank of owner of data
/////////////////////////
int rank, o_idx,i_idx, g_idx;
grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gsite);
grid->GlobalCoorToGlobalIndex(gsite,g_idx);
////////////////////////////////
// iorank reads from the seek
////////////////////////////////
if (myrank == iorank) {
fin.seekg(offset+g_idx*sizeof(fileObj));
fin.read((char *)&fileObj,sizeof(fileObj));
2016-03-16 09:30:16 +00:00
bytes+=sizeof(fileObj);
if(ieee32big) be32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) le32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) be64toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) le64toh_v((void *)&fileObj,sizeof(fileObj));
munge(fileObj,siteObj,csum);
}
// Possibly do transport through pt2pt
if ( rank != iorank ) {
if ( (myrank == rank) || (myrank==iorank) ) {
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,iorank,rank,sizeof(siteObj));
}
}
// Poke at destination
if ( myrank == rank ) {
pokeLocalSite(siteObj,Umu,lsite);
}
grid->Barrier(); // necessary?
}
grid->GlobalSum(csum);
2016-03-16 09:30:16 +00:00
grid->GlobalSum(bytes);
grid->Barrier();
2016-03-16 09:30:16 +00:00
timer.Stop();
std::cout<<GridLogPerformance<<"readObjectParallel: read "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
return csum;
}
//////////////////////////////////////////////////////////
// Parallel writer
//////////////////////////////////////////////////////////
template<class vobj,class fobj,class munger>
static inline uint32_t writeObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string & format)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Umu._grid;
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
int nd = grid->_ndimension;
for(int d=0;d<nd;d++){
assert(grid->CheckerBoarded(d) == 0);
}
std::vector<int> parallel(nd,1);
std::vector<int> ioproc (nd);
std::vector<int> start(nd);
std::vector<int> range(nd);
uint64_t slice_vol = 1;
int IOnode = 1;
for(int d=0;d<grid->_ndimension;d++) {
if ( d!= grid->_ndimension-1 ) parallel[d] = 0;
if (parallel[d]) {
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
} else {
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
}
slice_vol = slice_vol * range[d];
}
{
uint32_t tmp = IOnode;
grid->GlobalSum(tmp);
std::cout<< GridLogMessage<< "Parallel write I/O from "<< file << " with " <<tmp<< " IOnodes for subslice ";
for(int d=0;d<grid->_ndimension;d++){
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
}
std::cout << std::endl;
}
2016-03-16 09:30:16 +00:00
GridStopWatch timer; timer.Start();
uint64_t bytes=0;
int myrank = grid->ThisRank();
int iorank = grid->RankFromProcessorCoor(ioproc);
// Take into account block size of parallel file systems want about
// 4-16MB chunks.
// Ideally one reader/writer per xy plane and read these contiguously
// with comms from nominated I/O nodes.
std::ofstream fout;
if ( IOnode ) fout.open(file,std::ios::binary|std::ios::in|std::ios::out);
//////////////////////////////////////////////////////////
// Find the location of each site and send to primary node
// Take loop order from Chroma; defines loop order now that NERSC doc no longer
// available (how short sighted is that?)
//////////////////////////////////////////////////////////
uint32_t csum=0;
fobj fileObj;
static sobj siteObj; // static for SHMEM target; otherwise dynamic allocate with AlignedAllocator
// should aggregate a whole chunk and then write.
// need to implement these loops in Nd independent way with a lexico conversion
for(int tlex=0;tlex<slice_vol;tlex++){
std::vector<int> tsite(nd); // temporary mixed up site
std::vector<int> gsite(nd);
std::vector<int> lsite(nd);
std::vector<int> iosite(nd);
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(tsite,tlex,range);
for(int d=0;d<nd;d++){
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
}
/////////////////////////
// Get the rank of owner of data
/////////////////////////
int rank, o_idx,i_idx, g_idx;
grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gsite);
grid->GlobalCoorToGlobalIndex(gsite,g_idx);
////////////////////////////////
// iorank writes from the seek
////////////////////////////////
// Owner of data peeks it
peekLocalSite(siteObj,Umu,lsite);
// Pair of nodes may need to do pt2pt send
if ( rank != iorank ) { // comms is necessary
if ( (myrank == rank) || (myrank==iorank) ) { // and we have to do it
// Send to IOrank
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,rank,iorank,sizeof(siteObj));
}
}
grid->Barrier(); // necessary?
if (myrank == iorank) {
munge(siteObj,fileObj,csum);
if(ieee32big) htobe32_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) htole32_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) htobe64_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) htole64_v((void *)&fileObj,sizeof(fileObj));
fout.seekp(offset+g_idx*sizeof(fileObj));
fout.write((char *)&fileObj,sizeof(fileObj));
2016-03-16 09:30:16 +00:00
bytes+=sizeof(fileObj);
}
}
grid->GlobalSum(csum);
2016-03-16 09:30:16 +00:00
grid->GlobalSum(bytes);
timer.Stop();
std::cout<<GridLogPerformance<<"writeObjectParallel: wrote "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
return csum;
}
};
}
#endif