1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/tests/debug/Test_general_coarse_hdcg_phys48_lanczos.cc

762 lines
27 KiB
C++
Raw Normal View History

2024-08-27 16:32:34 +01:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
#include <Grid/algorithms/iterative/PowerSpectrum.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
template<class aggregation>
void SaveFineEvecs(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg[0].Grid()->IsBoss());
WR.open(file);
for(int b=0;b<Agg.size();b++){
WR.writeScidacFieldRecord(Agg[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSkip(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
if(n==0) precisionChange(Agg.subspace[b],tmp);
}
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSum(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
LatticeFermionF sum(tmp.Grid());
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
sum=Zero();
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
sum=sum+tmp;
}
precisionChange(Agg.subspace[b],sum);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class FixedCGPolynomial : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
ConjugateGradientPolynomial<Field> CG;
int iters;
bool record;
int replay_count;
FixedCGPolynomial(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters),
record(true),
CG(0.0,_iters,false)
{
std::cout << GridLogMessage<<" FixedCGPolynomial order "<<iters<<std::endl;
replay_count = 0;
};
void operator() (const Field &in, Field &out)
{
#if 1
GridBase *grid = in.Grid();
Field Mx0(grid);
Field r0(grid);
Field Minvr0(grid);
_SmootherOperator.HermOp(out,Mx0);
r0 = in - Mx0;
Minvr0 = Zero();
Minvr0.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,r0,Minvr0);
record = false;
/*
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
*/
Field tmp(Minvr0.Grid());
CG.CGsequenceHermOp(_SmootherOperator,r0,tmp);
tmp = tmp - Minvr0;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,r0,Minvr0);
if ( replay_count %5== 0 ) record=true;
replay_count++;
}
out = out + Minvr0;
_SmootherOperator.HermOp(out,r0);
r0 = r0 - in;
RealD rr=norm2(r0);
RealD ss=norm2(in);
std::cout << " FixedCGPolynomial replayed polynomial resid "<<::sqrt(rr/ss)<<std::endl;
#else
out = Zero();
out.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,in,out);
record = false;
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
Field tmp(in.Grid());
CG.CGsequenceHermOp(_SmootherOperator,in,tmp);
tmp = tmp - out;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,in,out);
if ( replay_count %5== 5 ) record=true;
replay_count++;
}
#endif
}
void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
for(int i=0;i<out.size();i++){
out[i]=Zero();
}
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<Field> BCGV (BlockCGrQVec,blockDim,0.0,iters,false);
BCGV(_SmootherOperator,in,out);
}
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out);
}
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
// Field r(out.Grid());
Cheby(_SmootherOperator,in,out);
// _SmootherOperator.HermOp(out,r);
// r=r-in;
// RealD rr=norm2(r);
// RealD ss=norm2(in);
// std::cout << GridLogMessage<<" Chebyshev smoother resid "<<::sqrt(rr/ss)<<std::endl;
}
};
template<class Field> class ChebyshevInverter : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _Operator;
Chebyshev<Field> Cheby;
ChebyshevInverter(RealD _lo,RealD _hi,int _ord, FineOperator &Operator) :
_Operator(Operator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev Inverter order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field r(in.Grid());
Field AinvR(in.Grid());
_Operator.HermOp(out,r);
r = in - r; // b - A x
Cheby(_Operator,r,AinvR); // A^{-1} ( b - A x ) ~ A^{-1} b - x
out = out + AinvR;
_Operator.HermOp(out,r);
r = in - r; // b - A x
RealD rr = norm2(r);
RealD ss = norm2(in);
std::cout << "ChebshevInverse resid " <<::sqrt(rr/ss)<<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int sample=1;
if( GridCmdOptionExists(argv,argv+argc,"--sample") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--sample");
GridCmdOptionInt(arg,sample);
}
const int Ls=24;
const int nbasis = 64;
const int cb = 0 ;
RealD mass=0.00078;
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
GridCmdOptionFloat(arg,mass);
}
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
std::cout << GridLogMessage << " *************************** " <<std::endl;
std::cout << GridLogMessage << " Mass " <<mass<<std::endl;
std::cout << GridLogMessage << " M5 " <<M5<<std::endl;
std::cout << GridLogMessage << " Ls " <<Ls<<std::endl;
std::cout << GridLogMessage << " b " <<b<<std::endl;
std::cout << GridLogMessage << " c " <<c<<std::endl;
std::cout << GridLogMessage << " *************************** " <<std::endl;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//////////////////////////////////////////
// Single precision grids -- lanczos + smoother
//////////////////////////////////////////
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Power method "<<std::endl;
std::cout << "**************************************"<<std::endl;
{
LatticeFermionD pm_src(FrbGrid);
pm_src = ComplexD(1.0);
PowerMethod<LatticeFermionD> fPM;
fPM(HermOpEO,pm_src);
}
if(0)
{
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef LatticeFermionF FermionField;
LatticeGaugeFieldF UmuF(UGridF);
precisionChange(UmuF,Umu);
MobiusFermionF DdwfF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionF, LatticeFermionF> HermOpEOF(DdwfF);
const int Fine_Nstop = 200;
const int Fine_Nk = 200;
const int Fine_Np = 200;
const int Fine_Nm = Fine_Nk+Fine_Np;
const int Fine_MaxIt= 10;
RealD Fine_resid = 1.0e-4;
std::cout << GridLogMessage << "Fine Lanczos "<<std::endl;
std::cout << GridLogMessage << "Nstop "<<Fine_Nstop<<std::endl;
std::cout << GridLogMessage << "Nk "<<Fine_Nk<<std::endl;
std::cout << GridLogMessage << "Np "<<Fine_Np<<std::endl;
std::cout << GridLogMessage << "resid "<<Fine_resid<<std::endl;
Chebyshev<FermionField> Cheby(0.002,92.0,401);
// Chebyshev<FermionField> Cheby(0.1,92.0,401);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOpEOF);
PlainHermOp<FermionField> Op (HermOpEOF);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Fine_Nstop,Fine_Nk,Fine_Nm,Fine_resid,Fine_MaxIt);
std::vector<RealD> Fine_eval(Fine_Nm);
FermionField Fine_src(FrbGridF);
Fine_src = ComplexF(1.0);
std::vector<FermionField> Fine_evec(Fine_Nm,FrbGridF);
int Fine_Nconv;
std::cout << GridLogMessage <<" Calling IRL.calc single prec"<<std::endl;
IRL.calc(Fine_eval,Fine_evec,Fine_src,Fine_Nconv);
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
SaveFineEvecs(Fine_evec,evec_file);
}
//////////////////////////////////////////
// Construct a coarsened grid with 4^4 cell
//////////////////////////////////////////
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
// // std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
// std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=true;
bool load_mat=false;
bool load_evec=false;
int refine=1;
if ( load_agg ) {
if ( !(refine) || (!load_refine) ) {
LoadBasis(Aggregates,subspace_file);
}
} else {
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
SaveBasis(Aggregates,subspace_file);
}
std::cout << "**************************************"<<std::endl;
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
std::cout << "**************************************"<<std::endl;
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
const int nrhs=12;
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
std::cout << "**************************************"<<std::endl;
std::cout << " Coarse Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
Chebyshev<CoarseVector> IRLCheby(0.005,42.0,301); // 1 iter
MrhsHermMatrix MrhsCoarseOp (mrhs);
// CoarseVector pm_src(CoarseMrhs);
// pm_src = ComplexD(1.0);
// PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
int Nk=192;
int Nm=384;
int Nstop=Nk;
int Nconv_test_interval=1;
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
Coarse5d,
CoarseMrhs,
nrhs,
IRLCheby,
Nstop,
Nconv_test_interval,
nrhs,
Nk,
Nm,
1e-5,10);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
///////////////////////
// Deflation guesser object
///////////////////////
MultiRHSDeflation<CoarseVector> MrhsGuesser;
//////////////////////////////////////////
// Block projector for coarse/fine
//////////////////////////////////////////
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
//////////////////////////
// Extra HDCG parameters
//////////////////////////
int maxit=300;
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
ConjugateGradient<CoarseVector> CGstart(5.0e-2,maxit,false);
RealD lo=2.0;
int ord = 7;
// int ord = 11;
int blockDim = 0;//not used for BlockCG
BlockConjugateGradient<CoarseVector> BCG (BlockCGrQ,blockDim,5.0e-5,maxit,true);
DoNothingGuesser<CoarseVector> DoNothing;
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsStart(MrhsCoarseOp,CGstart,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,BCG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,BCG,DoNothing);
// FixedCGPolynomial<CoarseVector> HPDSolveMrhs(maxit,MrhsCoarseOp);
ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); //
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,110,MrhsCoarseOp); // 114 iter with Chebysmooth and BlockCG
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); // 138 iter with Chebysmooth
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,200,MrhsCoarseOp); // 139 iter
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-3,40.0,200,MrhsCoarseOp); // 137 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-3,40.0,200,MrhsCoarseOp); // 146 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-4,40.0,200,MrhsCoarseOp); // 156 iter, CG smooth, flex
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,lo);
// FixedCGPolynomial<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
// CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
ChebyshevSmoother<LatticeFermionD> CGsmooth(2.0,92.0,8,HermOpEO) ;
if ( load_refine ) {
//LoadBasis(Aggregates,refine_file);
LatticeFermionF conv_tmp(FrbGridF);
LoadBasisSum(Aggregates,refine_file,sample,conv_tmp);
} else {
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
SaveBasis(Aggregates,refine_file);
}
Aggregates.Orthogonalise();
std::cout << "**************************************"<<std::endl;
std::cout << "Coarsen after refine"<<std::endl;
std::cout << "**************************************"<<std::endl;
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
std::cout << "**************************************"<<std::endl;
std::cout << " Recompute coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
evec.resize(Nm,Coarse5d);
eval.resize(Nm);
for(int r=0;r<nrhs;r++){
random(CRNG,c_src[r]);
}
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
std::cout << "**************************************"<<std::endl;
std::cout << " Reimport coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsGuesser.ImportEigenBasis(evec,eval);
std::cout << "**************************************"<<std::endl;
std::cout << " Setting up mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
std::cout << "**************************************"<<std::endl;
std::cout << "Calling mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhs(1.0e-8, 300,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
LatticeFermionD result_accurate(FrbGrid);
LatticeFermionD result_sloppy(FrbGrid);
LatticeFermionD error(FrbGrid);
LatticeFermionD residual(FrbGrid);
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
}
HDCGmrhs(src_mrhs,res_mrhs);
result_accurate = res_mrhs[0];
#if 0
std::vector<RealD> tols({1.0e-3,1.0e-4,1.0e-5});
std::vector<RealD> bins({1.0e-3,1.0e-2,1.0e-1,1.0,10.0,100.0});
std::vector<int> orders({6000 ,4000 ,1000 ,500,500 ,500});
PowerSpectrum GraphicEqualizer(bins,orders);
for(auto tol : tols) {
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhsSloppy(tol, 500,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
// Solve again to 10^-5
for(int r=0;r<nrhs;r++){
res_mrhs[r]=Zero();
}
HDCGmrhsSloppy(src_mrhs,res_mrhs);
result_sloppy = res_mrhs[0];
error = result_sloppy - result_accurate;
FineHermOp.HermOp(result_sloppy,residual);
residual = residual - src_mrhs[0];
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " Converged to tolerance "<< tol<<std::endl;
std::cout << GridLogMessage << " Absolute error "<<norm2(error)<<std::endl;
std::cout << GridLogMessage << " Residual "<<norm2(residual)<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of error "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,error);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of residual "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,residual);
};
#endif
// Standard CG
#if 0
{
std::cout << "**************************************"<<std::endl;
std::cout << "Calling red black CG"<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
CGfine(HermOpEO, src, result);
}
#endif
Grid_finalize();
return 0;
}