1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/hadrons/Test_free_prop.cc

246 lines
9.1 KiB
C++
Raw Normal View History

2018-05-03 12:33:20 +01:00
/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hadrons/Test_free_prop.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <v.m.guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
2018-05-03 12:33:20 +01:00
using namespace Grid;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
std::vector<std::string> flavour = {"h"}; //{"l", "s", "c1", "c2", "c3"};
std::vector<double> mass = {.2}; //{.01, .04, .2 , .25 , .3 };
std::vector<std::string> lepton_flavour = {"mu"};
std::vector<double> lepton_mass = {.2};
unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.seed = "1 2 3 4";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// unit gauge field for lepton
application.createModule<MGauge::Unit>("free_gauge");
// pt source
MSource::Point::Par ptPar;
ptPar.position = "0 0 0 0";
application.createModule<MSource::Point>("pt", ptPar);
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
//Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_mass.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar_lep;
actionPar_lep.gauge = "free_gauge";
actionPar_lep.Ls = 8;
actionPar_lep.M5 = 1.8;
actionPar_lep.mass = lepton_mass[i];
actionPar_lep.boundary = boundary;
application.createModule<MAction::DWF>("free_DWF_" + lepton_flavour[i], actionPar_lep);
//DWF free propagators
MFermion::FreeProp::Par freePar;
freePar.source = "pt";
freePar.action = "free_DWF_" + lepton_flavour[i];
freePar.twist = "0 0 0 0.5";
freePar.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("Lpt_" + lepton_flavour[i],
freePar);
//Wilson actions
MAction::Wilson::Par actionPar_lep_W;
actionPar_lep_W.gauge = "free_gauge";
actionPar_lep_W.mass = lepton_mass[i];
actionPar_lep_W.boundary = boundary;
application.createModule<MAction::Wilson>("free_W_" + lepton_flavour[i], actionPar_lep_W);
//Wilson free propagators
MFermion::FreeProp::Par freePar_W;
freePar_W.source = "pt";
freePar_W.action = "free_W_" + lepton_flavour[i];
freePar_W.twist = "0 0 0 0.5";
freePar_W.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("W_Lpt_" + lepton_flavour[i],
freePar_W);
}
//Propagators from inversion
for (unsigned int i = 0; i < flavour.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 8;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
//DWF propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_" + flavour[i];
quarkPar.source = "pt";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i],
quarkPar);
//Wilson actions
MAction::Wilson::Par actionPar_W;
actionPar_W.gauge = "gauge";
actionPar_W.mass = mass[i];
actionPar_W.boundary = boundary;
application.createModule<MAction::Wilson>("W_" + flavour[i], actionPar_W);
// solvers
MSolver::RBPrecCG::Par solverPar_W;
solverPar_W.action = "W_" + flavour[i];
solverPar_W.residual = 1.0e-8;
solverPar_W.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("W_CG_" + flavour[i],
solverPar_W);
//Wilson propagators
MFermion::GaugeProp::Par quarkPar_W;
quarkPar_W.solver = "W_CG_" + flavour[i];
quarkPar_W.source = "pt";
application.createModule<MFermion::GaugeProp>("W_Qpt_" + flavour[i],
quarkPar_W);
}
//2pt contraction for Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_flavour.size(); ++i)
for (unsigned int j = i; j < lepton_flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par freemesPar;
freemesPar.output = "2pt_free/DWF_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar.q1 = "Lpt_" + lepton_flavour[i];
freemesPar.q2 = "Lpt_" + lepton_flavour[j];
freemesPar.gammas = "(Gamma5 Gamma5)";
freemesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar);
//2pt function contraction Wilson
MContraction::Meson::Par freemesPar_W;
freemesPar_W.output = "2pt_free/W_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar_W.q1 = "W_Lpt_" + lepton_flavour[i];
freemesPar_W.q2 = "W_Lpt_" + lepton_flavour[j];
freemesPar_W.gammas = "(Gamma5 Gamma5)";
freemesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar_W);
}
//2pt contraction for Propagators from inverion
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = i; j < flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par mesPar;
mesPar.output = "2pt_free/DWF_pt_" + flavour[i] + flavour[j];
mesPar.q1 = "Qpt_" + flavour[i];
mesPar.q2 = "Qpt_" + flavour[j];
mesPar.gammas = "(Gamma5 Gamma5)";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_pt_"
+ flavour[i] + flavour[j],
mesPar);
//2pt function contraction Wilson
MContraction::Meson::Par mesPar_W;
mesPar_W.output = "2pt_free/W_pt_" + flavour[i] + flavour[j];
mesPar_W.q1 = "W_Qpt_" + flavour[i];
mesPar_W.q2 = "W_Qpt_" + flavour[j];
mesPar_W.gammas = "(Gamma5 Gamma5)";
mesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_pt_"
+ flavour[i] + flavour[j],
mesPar_W);
}
// execution
application.saveParameterFile("free_prop.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}