1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/algorithms/LinearOperator.h

478 lines
16 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/LinearOperator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
2015-05-13 11:25:34 +01:00
#ifndef GRID_ALGORITHM_LINEAR_OP_H
#define GRID_ALGORITHM_LINEAR_OP_H
namespace Grid {
2015-05-16 23:35:08 +01:00
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
//SBase
2015-05-16 23:35:08 +01:00
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
2015-05-13 11:25:34 +01:00
public:
2015-06-08 12:02:53 +01:00
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
2015-05-16 23:35:08 +01:00
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2);
2015-06-05 18:16:25 +01:00
virtual void HermOp(const Field &in, Field &out)=0;
2015-05-13 11:25:34 +01:00
};
2015-05-16 23:35:08 +01:00
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
2015-05-16 23:35:08 +01:00
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
2015-05-16 23:35:08 +01:00
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
2015-06-08 12:02:53 +01:00
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
2015-05-16 23:35:08 +01:00
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
2015-06-05 18:16:25 +01:00
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
}
2015-06-05 18:16:25 +01:00
void HermOp(const Field &in, Field &out){
RealD n1,n2;
2015-07-21 05:54:09 +01:00
HermOpAndNorm(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
out = out + _shift*in;
ComplexD dot;
dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
2015-06-05 18:16:25 +01:00
HermOpAndNorm(in,out,n1,n2);
}
2015-05-16 23:35:08 +01:00
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
2015-05-16 23:35:08 +01:00
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
2015-06-08 12:02:53 +01:00
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
2015-05-16 23:35:08 +01:00
void Op (const Field &in, Field &out){
_Mat.M(in,out);
2015-05-16 23:35:08 +01:00
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
2015-06-05 18:16:25 +01:00
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.M(in,out);
2017-10-10 12:02:18 +01:00
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
2015-05-16 23:35:08 +01:00
}
2015-06-05 18:16:25 +01:00
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
2015-05-16 23:35:08 +01:00
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
2017-10-10 10:00:43 +01:00
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
MpcDagMpc(in,out,n1,n2);
}
2017-10-10 10:00:43 +01:00
virtual void HermOp(const Field &in, Field &out){
2015-06-05 18:16:25 +01:00
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
2015-06-08 12:02:53 +01:00
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
2015-05-16 23:35:08 +01:00
public:
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
// std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
2015-05-16 23:35:08 +01:00
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
2015-05-16 23:35:08 +01:00
_Mat.MeooeDag(in,tmp);
2016-12-13 06:35:30 +00:00
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
2015-05-16 23:35:08 +01:00
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
2015-05-16 23:35:08 +01:00
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
2017-10-10 14:15:11 +01:00
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
2017-10-10 10:00:43 +01:00
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
double tMpc;
double tIP;
double tMeo;
double taxpby_norm;
uint64_t ncall;
2017-10-10 10:00:43 +01:00
public:
void Report(void)
{
std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " HermOpAndNorm.IP "<< tIP /ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.MeoMoe "<< tMeo/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.axpby_norm "<< taxpby_norm/ncall<<" usec "<<std::endl;
}
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
tMpc=0;
tIP =0;
tMeo=0;
taxpby_norm=0;
ncall=0;
}
2017-10-10 10:00:43 +01:00
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
ncall++;
tMpc-=usecond();
2017-10-10 12:02:18 +01:00
n2 = Mpc(in,out);
tMpc+=usecond();
tIP-=usecond();
2017-10-10 14:15:11 +01:00
ComplexD dot= innerProduct(in,out);
tIP+=usecond();
2017-10-10 12:02:18 +01:00
n1 = real(dot);
2017-10-10 10:00:43 +01:00
}
virtual void HermOp(const Field &in, Field &out){
ncall++;
tMpc-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
tMpc+=usecond();
taxpby_norm-=usecond();
axpby(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
2017-10-10 10:00:43 +01:00
}
virtual RealD Mpc (const Field &in, Field &out) {
tMeo-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
tMeo+=usecond();
taxpby_norm-=usecond();
RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
2017-11-24 14:18:30 +00:00
return nn;
2017-10-10 10:00:43 +01:00
}
virtual RealD MpcDag (const Field &in, Field &out){
return Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
2015-05-16 23:35:08 +01:00
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
2015-05-16 23:35:08 +01:00
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
2015-05-16 23:35:08 +01:00
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
2015-05-16 23:35:08 +01:00
2015-05-13 11:25:34 +01:00
}
#endif