1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/tests/lanczos/Test_dwf_block_lanczos.cc.double

402 lines
13 KiB
Plaintext
Raw Normal View History

2022-11-30 21:08:40 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_block_lanczos.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/util/Init.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
using namespace std;
using namespace Grid;
//using namespace Grid::QCD;
//typedef typename GparityDomainWallFermionR::FermionField FermionField;
typedef typename ZMobiusFermionR::FermionField FermionField;
RealD AllZero(RealD x){ return 0.;}
class CmdJobParams
{
public:
std::string gaugefile;
int Ls;
double mass;
double M5;
double mob_b;
std::vector<ComplexD> omega;
std::vector<Complex> boundary_phase;
std::vector<int> mpi_split;
LanczosType Impl;
int Nu;
int Nk;
int Np;
int Nm;
int Nstop;
int Ntest;
int MaxIter;
double resid;
double low;
double high;
int order;
CmdJobParams()
: gaugefile("Hot"),
Ls(8), mass(0.01), M5(1.8), mob_b(1.5),
Impl(LanczosType::irbl),mpi_split(4,1),
Nu(4), Nk(200), Np(200), Nstop(100), Ntest(1), MaxIter(10), resid(1.0e-8),
low(0.2), high(5.5), order(11)
{Nm=Nk+Np;};
void Parse(char **argv, int argc);
};
void CmdJobParams::Parse(char **argv,int argc)
{
std::string arg;
std::vector<int> vi;
double re,im;
int expect, idx;
std::string vstr;
std::ifstream pfile;
if( GridCmdOptionExists(argv,argv+argc,"--gconf") ){
gaugefile = GridCmdOptionPayload(argv,argv+argc,"--gconf");
}
if( GridCmdOptionExists(argv,argv+argc,"--phase") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--phase");
pfile.open(arg);
assert(pfile);
expect = 0;
while( pfile >> vstr ) {
if ( vstr.compare("boundary_phase") == 0 ) {
pfile >> vstr;
GridCmdOptionInt(vstr,idx);
assert(expect==idx);
pfile >> vstr;
GridCmdOptionFloat(vstr,re);
pfile >> vstr;
GridCmdOptionFloat(vstr,im);
boundary_phase.push_back({re,im});
expect++;
}
}
pfile.close();
} else {
for (int i=0; i<4; ++i) boundary_phase.push_back({1.,0.});
}
if( GridCmdOptionExists(argv,argv+argc,"--omega") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--omega");
pfile.open(arg);
assert(pfile);
Ls = 0;
while( pfile >> vstr ) {
if ( vstr.compare("omega") == 0 ) {
pfile >> vstr;
GridCmdOptionInt(vstr,idx);
assert(Ls==idx);
pfile >> vstr;
GridCmdOptionFloat(vstr,re);
pfile >> vstr;
GridCmdOptionFloat(vstr,im);
omega.push_back({re,im});
Ls++;
}
}
pfile.close();
} else {
if( GridCmdOptionExists(argv,argv+argc,"--Ls") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--Ls");
GridCmdOptionInt(arg,Ls);
}
}
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
GridCmdOptionFloat(arg,mass);
}
if( GridCmdOptionExists(argv,argv+argc,"--M5") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--M5");
GridCmdOptionFloat(arg,M5);
}
if( GridCmdOptionExists(argv,argv+argc,"--mob_b") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--mob_b");
GridCmdOptionFloat(arg,mob_b);
}
if( GridCmdOptionExists(argv,argv+argc,"--irbl") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--irbl");
GridCmdOptionIntVector(arg,vi);
Nu = vi[0];
Nk = vi[1];
Np = vi[2];
Nstop = vi[3];
MaxIter = vi[4];
// ypj[fixme] mode overriding message is needed.
Impl = LanczosType::irbl;
Nm = Nk+Np;
}
// block Lanczos with explicit extension of its dimensions
if( GridCmdOptionExists(argv,argv+argc,"--rbl") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--rbl");
GridCmdOptionIntVector(arg,vi);
Nu = vi[0];
Nk = vi[1];
Np = vi[2]; // vector space is enlarged by adding Np vectors
Nstop = vi[3];
MaxIter = vi[4];
// ypj[fixme] mode overriding message is needed.
Impl = LanczosType::rbl;
Nm = Nk+Np*MaxIter;
}
#if 1
// block Lanczos with explicit extension of its dimensions
if( GridCmdOptionExists(argv,argv+argc,"--split") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--split");
GridCmdOptionIntVector(arg,vi);
for(int i=0;i<mpi_split.size();i++)
mpi_split[i] = vi[i];
}
#endif
if( GridCmdOptionExists(argv,argv+argc,"--check_int") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--check_int");
GridCmdOptionInt(arg,Ntest);
}
if( GridCmdOptionExists(argv,argv+argc,"--resid") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--resid");
GridCmdOptionFloat(arg,resid);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_l") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_l");
GridCmdOptionFloat(arg,low);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_u") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_u");
GridCmdOptionFloat(arg,high);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_n") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_n");
GridCmdOptionInt(arg,order);
}
if ( CartesianCommunicator::RankWorld() == 0 ) {
std::streamsize ss = std::cout.precision();
std::cout << GridLogMessage <<" Gauge Configuration "<< gaugefile << '\n';
std::cout.precision(15);
for ( int i=0; i<4; ++i ) std::cout << GridLogMessage <<" boundary_phase["<< i << "] = " << boundary_phase[i] << '\n';
std::cout.precision(ss);
std::cout << GridLogMessage <<" Ls "<< Ls << '\n';
std::cout << GridLogMessage <<" mass "<< mass << '\n';
std::cout << GridLogMessage <<" M5 "<< M5 << '\n';
std::cout << GridLogMessage <<" mob_b "<< mob_b << '\n';
std::cout.precision(15);
for ( int i=0; i<Ls; ++i ) std::cout << GridLogMessage <<" omega["<< i << "] = " << omega[i] << '\n';
std::cout.precision(ss);
std::cout << GridLogMessage <<" Nu "<< Nu << '\n';
std::cout << GridLogMessage <<" Nk "<< Nk << '\n';
std::cout << GridLogMessage <<" Np "<< Np << '\n';
std::cout << GridLogMessage <<" Nm "<< Nm << '\n';
std::cout << GridLogMessage <<" Nstop "<< Nstop << '\n';
std::cout << GridLogMessage <<" Ntest "<< Ntest << '\n';
std::cout << GridLogMessage <<" MaxIter "<< MaxIter << '\n';
std::cout << GridLogMessage <<" resid "<< resid << '\n';
std::cout << GridLogMessage <<" Cheby Poly "<< low << "," << high << "," << order << std::endl;
}
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
CmdJobParams JP;
JP.Parse(argv,argc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,UGrid);
// printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n",UGrid,UrbGrid,FGrid,FrbGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
// ypj [note] why seed RNG5 again? bug? In this case, run with a default seed().
GridParallelRNG RNG5rb(FrbGrid); RNG5rb.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
std::vector<LatticeColourMatrix> U(4,UGrid);
if ( JP.gaugefile.compare("Hot") == 0 ) {
SU3::HotConfiguration(RNG4, Umu);
} else {
FieldMetaData header;
NerscIO::readConfiguration(Umu,header,JP.gaugefile);
// ypj [fixme] additional checks for the loaded configuration?
}
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
RealD mass = JP.mass;
RealD M5 = JP.M5;
// ypj [fixme] flexible support for a various Fermions
// RealD mob_b = JP.mob_b; // Gparity
// std::vector<ComplexD> omega; // ZMobius
// GparityMobiusFermionD ::ImplParams params;
// std::vector<int> twists({1,1,1,0});
// params.twists = twists;
// GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
// SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
// int mrhs = JP.Nu;
int Ndir=4;
auto mpi_layout = GridDefaultMpi();
std::vector<int> mpi_split (Ndir,1);
#if 0
int tmp=mrhs, dir=0;
std::cout << GridLogMessage << "dir= "<<dir <<"tmp= "<<tmp<<"mpi_split= "<<mpi_split[dir]<<"mpi_layout= "<<mpi_split[dir]<<std::endl;
while ( tmp> 1) {
if ((mpi_split[dir]*2) <= mpi_layout[dir]){
mpi_split[dir] *=2;
tmp = tmp/2;
}
std::cout << GridLogMessage << "dir= "<<dir <<"tmp= "<<tmp<<"mpi_split= "<<mpi_split[dir]<<"mpi_layout= "<<mpi_layout[dir]<<std::endl;
dir = (dir+1)%Ndir;
}
#endif
int mrhs=1;
for(int i =0;i<Ndir;i++){
mpi_split[i] = mpi_layout[i] / JP.mpi_split[i] ;
mrhs *= JP.mpi_split[i];
}
std::cout << GridLogMessage << "mpi_layout= " << mpi_layout << std::endl;
std::cout << GridLogMessage << "mpi_split= " << mpi_split << std::endl;
std::cout << GridLogMessage << "mrhs= " << mrhs << std::endl;
// assert(JP.Nu==tmp);
/////////////////////////////////////////////
// Split into 1^4 mpi communicators
/////////////////////////////////////////////
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
mpi_split,
*UGrid);
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,SGrid);
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,SGrid);
LatticeGaugeField s_Umu(SGrid);
Grid_split (Umu,s_Umu);
//WilsonFermionR::ImplParams params;
ZMobiusFermionR::ImplParams params;
params.overlapCommsCompute = true;
params.boundary_phases = JP.boundary_phase;
ZMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,JP.omega,1.,0.,params);
// SchurDiagTwoOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf);
SchurDiagOneOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf);
ZMobiusFermionR Dsplit(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,JP.omega,1.,0.,params);
// SchurDiagTwoOperator<ZMobiusFermionR,FermionField> SHermOp(Dsplit);
SchurDiagOneOperator<ZMobiusFermionR,FermionField> SHermOp(Dsplit);
//std::vector<double> Coeffs { 0.,-1.};
// ypj [note] this may not be supported by some compilers
std::vector<double> Coeffs({ 0.,-1.});
Polynomial<FermionField> PolyX(Coeffs);
//Chebyshev<FermionField> Cheb(0.2,5.5,11);
Chebyshev<FermionField> Cheb(JP.low,JP.high,JP.order);
// Cheb.csv(std::cout);
ImplicitlyRestartedBlockLanczos<FermionField> IRBL(HermOp, SHermOp,
FrbGrid,SFrbGrid,mrhs,
Cheb,
JP.Nstop, JP.Ntest,
JP.Nu, JP.Nk, JP.Nm,
JP.resid,
JP.MaxIter,
IRBLdiagonaliseWithEigen);
// IRBLdiagonaliseWithLAPACK);
IRBL.split_test=0;
std::vector<RealD> eval(JP.Nm);
std::vector<FermionField> src(JP.Nu,FrbGrid);
if (0)
{
// in case RNG is too slow
std::cout << GridLogMessage << "Using RNG5"<<std::endl;
FermionField src_tmp(FGrid);
for ( int i=0; i<JP.Nu; ++i ){
// gaussian(RNG5,src_tmp);
ComplexD rnd;
RealD re;
fillScalar(re,RNG5._gaussian[0],RNG5._generators[0]);
std::cout << i <<" / "<< JP.Nm <<" re "<< re << std::endl;
// printf("%d / %d re %e\n",i,FGrid->_processor,re);
src_tmp=re;
pickCheckerboard(Odd,src[i],src_tmp);
}
RNG5.Report();
} else {
std::cout << GridLogMessage << "Using RNG5rb"<<std::endl;
for ( int i=0; i<JP.Nu; ++i )
gaussian(RNG5rb,src[i]);
RNG5rb.Report();
}
std::vector<FermionField> evec(JP.Nm,FrbGrid);
for(int i=0;i<1;++i){
std::cout << GridLogMessage << i <<" / "<< JP.Nm <<" grid pointer "<< evec[i].Grid() << std::endl;
};
int Nconv;
IRBL.calc(eval,evec,src,Nconv,JP.Impl);
Grid_finalize();
}