1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/Hadrons/Utilities/ContractorBenchmark.cc

268 lines
8.5 KiB
C++
Raw Normal View History

2018-10-23 17:08:16 +01:00
#include <Hadrons/Global.hpp>
#include <Hadrons/DiskVector.hpp>
2018-10-23 21:00:54 +01:00
#ifdef USE_MKL
#include "mkl.h"
#include "mkl_cblas.h"
#endif
2018-10-23 17:08:16 +01:00
using namespace Grid;
2018-10-23 21:00:54 +01:00
#define EIGEN_ROW_MAJOR 1
#define EIGEN_COL_MAJOR 2
2018-10-23 17:08:16 +01:00
#ifndef EIGEN_ORDER
2018-10-23 21:00:54 +01:00
#define EIGEN_ORDER EIGEN_ROW_MAJOR
#endif
#if (EIGEN_ORDER == EIGEN_ROW_MAJOR)
typedef Eigen::Matrix<ComplexD, -1, -1, Eigen::RowMajor> CMat;
#elif (EIGEN_ORDER == EIGEN_COL_MAJOR)
typedef Eigen::Matrix<ComplexD, -1, -1, Eigen::ColMajor> CMat;
2018-10-23 17:08:16 +01:00
#endif
typedef std::vector<std::vector<CMat>> CMatSet;
2018-10-23 21:00:54 +01:00
#pragma omp declare reduction(ComplexPlus: ComplexD: omp_out += omp_in)
template <typename Function>
inline void trBenchmark(const std::string name, const CMatSet &mat,
const ComplexD ref, Function fn)
2018-10-23 17:08:16 +01:00
{
double t, flops, bytes, n = mat[0][0].rows()*mat[0][0].cols();
unsigned int nMat = mat[0].size();
ComplexD buf;
t = 0.;
for (unsigned int i = 0; i < nMat; ++i)
{
t -= usecond();
fn(buf, mat[0][i], mat[1][i]);
t += usecond();
}
flops = nMat*(6.*n + 2.*(n - 1.));
bytes = nMat*(2.*n*sizeof(ComplexD));
2018-10-23 21:00:54 +01:00
std::cout << std::setw(30) << name << ": diff= "
<< std::setw(12) << std::norm(buf-ref)
<< std::setw(10) << t/1.0e6 << " sec "
<< std::setw(10) << flops/t/1.0e3 << " GFlop/s "
<< std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s "
<< std::endl;
::sleep(1);
}
template <typename Function>
inline void mulBenchmark(const std::string name, const CMatSet &mat,
const CMat ref, Function fn)
{
double t, flops, bytes;
double nr = mat[0][0].rows(), nc = mat[0][0].cols(), n = nr*nc;
unsigned int nMat = mat[0].size();
CMat buf(mat[0][0].rows(), mat[0][0].rows());
t = 0.;
for (unsigned int i = 0; i < nMat; ++i)
{
t -= usecond();
fn(buf, mat[0][i], mat[1][i]);
t += usecond();
}
flops = nMat*(n*(6.*nc + 2.*(nc - 1.)));
bytes = nMat*((2.*n+nr*nr)*sizeof(ComplexD));
std::cout << std::setw(30) << name << ": diff= "
<< std::setw(12) << (buf-ref).squaredNorm()
<< std::setw(10) << t/1.0e6 << " sec "
2018-10-23 17:08:16 +01:00
<< std::setw(10) << flops/t/1.0e3 << " GFlop/s "
<< std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s "
<< std::endl;
::sleep(1);
}
int main(int argc, char *argv[])
{
// parse command line
Eigen::Index ni, nj, nMat;
if (argc != 4)
{
std::cerr << "usage: " << argv[0] << " <Ni> <Nj> <#matrices>";
std::cerr << std::endl;
return EXIT_FAILURE;
}
ni = std::stoi(argv[1]);
nj = std::stoi(argv[2]);
nMat = std::stoi(argv[3]);
2018-10-23 21:00:54 +01:00
std::cout << "\n*** ALL-TO-ALL MATRIX CONTRACTION BENCHMARK ***\n" << std::endl;
std::cout << nMat << " " << ni << "x" << nj << " matrices\n" << std::endl;
#ifdef EIGEN_USE_MKL_ALL
std::cout << "Eigen uses the MKL" << std::endl;
#endif
std::cout << "Eigen uses ";
#if (EIGEN_ORDER == EIGEN_ROW_MAJOR)
std::cout << "row-major ordering" << std::endl;
#elif (EIGEN_ORDER == EIGEN_COL_MAJOR)
std::cout << "column-major ordering" << std::endl;
#endif
std::cout << "Eigen uses " << Eigen::nbThreads() << " thread(s)" << std::endl;
#ifdef USE_MKL
std::cout << "MKL uses " << mkl_get_max_threads() << " thread(s)" << std::endl;
#endif
std::cout << std::endl;
CMatSet mat(2);
CMat buf;
ComplexD ref;
2018-10-23 17:08:16 +01:00
mat[0].resize(nMat, Eigen::MatrixXcd::Random(ni, nj));
mat[1].resize(nMat, Eigen::MatrixXcd::Random(nj, ni));
2018-10-23 21:00:54 +01:00
std::cout << "==== tr(A*B) benchmarks" << std::endl;
ref = (mat[0].back()*mat[1].back()).trace();
trBenchmark("Naive loop rows first", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
2018-10-23 21:00:54 +01:00
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
2018-10-23 17:08:16 +01:00
for (unsigned int i = 0; i < a.rows(); ++i)
for (unsigned int j = 0; j < a.cols(); ++j)
{
res += a(i, j)*b(j, i);
}
});
2018-10-23 21:00:54 +01:00
trBenchmark("Naive loop cols first", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
2018-10-23 21:00:54 +01:00
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
2018-10-23 17:08:16 +01:00
for (unsigned int j = 0; j < a.cols(); ++j)
for (unsigned int i = 0; i < a.rows(); ++i)
{
res += a(i, j)*b(j, i);
}
});
2018-10-23 21:00:54 +01:00
trBenchmark("Eigen tr(A*B)", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = (a*b).trace();
});
2018-10-23 21:00:54 +01:00
trBenchmark("Eigen global dot", mat, ref,
2018-10-23 17:08:16 +01:00
[&buf](ComplexD &res, const CMat &a, const CMat &b)
{
buf = b.transpose();
Eigen::Map<const Eigen::VectorXcd> av(a.data(), a.rows()*a.cols());
Eigen::Map<const Eigen::VectorXcd> bv(buf.data(), b.rows()*b.cols());
res = av.conjugate().dot(bv);
});
2018-10-23 21:00:54 +01:00
trBenchmark("Eigen row-wise dot", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
2018-10-23 21:00:54 +01:00
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
2018-10-23 17:08:16 +01:00
for (unsigned int r = 0; r < a.rows(); ++r)
{
res += a.row(r).conjugate().dot(b.col(r));
}
});
2018-10-23 21:00:54 +01:00
trBenchmark("Eigen col-wise dot", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
2018-10-23 21:00:54 +01:00
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
for (unsigned int c = 0; c < a.cols(); ++c)
2018-10-23 17:08:16 +01:00
{
2018-10-23 21:00:54 +01:00
res += a.col(c).conjugate().dot(b.row(c));
2018-10-23 17:08:16 +01:00
}
});
2018-10-23 21:00:54 +01:00
trBenchmark("Eigen Hadamard", mat, ref,
2018-10-23 17:08:16 +01:00
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = a.cwiseProduct(b.transpose()).sum();
});
2018-10-23 21:00:54 +01:00
#ifdef USE_MKL
trBenchmark("MKL row-wise zdotu", mat, ref,
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
for (unsigned int r = 0; r < a.rows(); ++r)
{
ComplexD tmp;
#if (EIGEN_ORDER == EIGEN_ROW_MAJOR)
cblas_zdotu_sub(a.cols(), a.data() + r*a.cols(), 1, b.data() + r, b.cols(), &tmp);
#elif (EIGEN_ORDER == EIGEN_COL_MAJOR)
cblas_zdotu_sub(a.cols(), a.data() + r, a.rows(), b.data() + r*b.rows(), 1, &tmp);
#endif
res += tmp;
}
});
trBenchmark("MKL col-wise zdotu", mat, ref,
[](ComplexD &res, const CMat &a, const CMat &b)
{
res = 0.;
#pragma omp parallel for schedule(static) reduction(ComplexPlus:res)
for (unsigned int c = 0; c < a.cols(); ++c)
{
ComplexD tmp;
#if (EIGEN_ORDER == EIGEN_ROW_MAJOR)
cblas_zdotu_sub(a.rows(), a.data() + c, a.cols(), b.data() + c*b.cols(), 1, &tmp);
#elif (EIGEN_ORDER == EIGEN_COL_MAJOR)
cblas_zdotu_sub(a.rows(), a.data() + c*a.rows(), 1, b.data() + c, b.rows(), &tmp);
#endif
res += tmp;
}
});
#endif
std::cout << std::endl;
std::cout << "==== A*B benchmarks" << std::endl;
buf = mat[0].back()*mat[1].back();
mulBenchmark("Naive", mat, buf,
[](CMat &res, const CMat &a, const CMat &b)
{
unsigned int ni = a.rows(), nj = a.cols();
#pragma omp parallel for collapse(2)
for (unsigned int i = 0; i < ni; ++i)
for (unsigned int k = 0; k < ni; ++k)
{
res(i, k) = a(i, 0)*b(0, k);
}
#pragma omp parallel for collapse(2)
for (unsigned int i = 0; i < ni; ++i)
for (unsigned int k = 0; k < ni; ++k)
for (unsigned int j = 1; j < nj; ++j)
{
res(i, k) += a(i, j)*b(j, k);
}
});
mulBenchmark("Eigen A*B", mat, buf,
[](CMat &res, const CMat &a, const CMat &b)
{
res = a*b;
});
#ifdef USE_MKL
mulBenchmark("MKL A*B", mat, buf,
[](CMat &res, const CMat &a, const CMat &b)
{
const ComplexD one(1., 0.), zero(0., 0.);
#if (EIGEN_ORDER == EIGEN_ROW_MAJOR)
cblas_zgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.cols(), b.data(), b.cols(), &zero,
res.data(), res.cols());
#elif (EIGEN_ORDER == EIGEN_COL_MAJOR)
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.rows(), b.data(), b.rows(), &zero,
res.data(), res.rows());
#endif
});
#endif
std::cout << std::endl;
2018-10-23 17:08:16 +01:00
return EXIT_SUCCESS;
}