mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 17:55:38 +00:00
583 lines
22 KiB
C++
583 lines
22 KiB
C++
|
/*************************************************************************************
|
||
|
|
||
|
Grid physics library, www.github.com/paboyle/Grid
|
||
|
|
||
|
Source file: ./tests/Test_evec_compression.cc
|
||
|
|
||
|
Copyright (C) 2017
|
||
|
|
||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License along
|
||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
|
||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||
|
*************************************************************************************/
|
||
|
/* END LEGAL */
|
||
|
/*
|
||
|
*
|
||
|
* This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
|
||
|
* to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
|
||
|
* blocking and basis size for performing a Local Coherence Lanczos
|
||
|
*/
|
||
|
#include <Grid/Grid.h>
|
||
|
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||
|
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace Grid;
|
||
|
|
||
|
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
|
||
|
template<typename Gimpl>
|
||
|
void readConfiguration(LatticeGaugeFieldD &U,
|
||
|
const std::string &config,
|
||
|
bool is_cps_cfg = false){
|
||
|
|
||
|
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
|
||
|
|
||
|
typedef GaugeStatistics<Gimpl> GaugeStats;
|
||
|
|
||
|
FieldMetaData header;
|
||
|
NerscIO::readConfiguration<GaugeStats>(U, header, config);
|
||
|
|
||
|
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
|
||
|
}
|
||
|
|
||
|
//Lanczos parameters in CPS conventions
|
||
|
struct CPSLanczosParams : Serializable {
|
||
|
public:
|
||
|
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
|
||
|
RealD, alpha,
|
||
|
RealD, beta,
|
||
|
int, ch_ord,
|
||
|
int, N_use,
|
||
|
int, N_get,
|
||
|
int, N_true_get,
|
||
|
RealD, stop_rsd,
|
||
|
int, maxits);
|
||
|
|
||
|
//Translations
|
||
|
ChebyParams getChebyParams() const{
|
||
|
ChebyParams out;
|
||
|
out.alpha = beta*beta; //aka lo
|
||
|
out.beta = alpha*alpha; //aka hi
|
||
|
out.Npoly = ch_ord+1;
|
||
|
return out;
|
||
|
}
|
||
|
int Nstop() const{ return N_true_get; }
|
||
|
int Nm() const{ return N_use; }
|
||
|
int Nk() const{ return N_get; }
|
||
|
};
|
||
|
|
||
|
|
||
|
template<class Fobj,class CComplex,int nbasis>
|
||
|
class LocalCoherenceCompressor{
|
||
|
public:
|
||
|
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||
|
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||
|
typedef Lattice<CoarseSiteVector> CoarseField;
|
||
|
typedef Lattice<Fobj> FineField;
|
||
|
|
||
|
void compress(std::vector<FineField> &basis,
|
||
|
std::vector<CoarseField> &compressed_evecs,
|
||
|
const std::vector<FineField> &evecs_in,
|
||
|
GridBase *FineGrid,
|
||
|
GridBase *CoarseGrid){
|
||
|
int nevecs = evecs_in.size();
|
||
|
assert(nevecs > nbasis);
|
||
|
|
||
|
//Construct the basis
|
||
|
basis.resize(nbasis, FineGrid);
|
||
|
for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
|
||
|
|
||
|
//Block othornormalize basis
|
||
|
CoarseScalar InnerProd(CoarseGrid);
|
||
|
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||
|
blockOrthogonalise(InnerProd,basis);
|
||
|
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||
|
blockOrthogonalise(InnerProd,basis);
|
||
|
|
||
|
//The coarse grid representation is the field of vectors of block inner products
|
||
|
std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
|
||
|
compressed_evecs.resize(nevecs, CoarseGrid);
|
||
|
for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
|
||
|
std::cout << GridLogMessage << "Compression complete" << std::endl;
|
||
|
}
|
||
|
|
||
|
void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
|
||
|
blockPromote(compressed_evecs[i],evec,basis);
|
||
|
}
|
||
|
|
||
|
//Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
|
||
|
//Because the uncompressed evec has a lot of high mode noise (unimportant for deflation) we apply a smoother before testing.
|
||
|
//The Chebyshev used by the Lanczos should be sufficient as a smoother
|
||
|
bool testCompression(LinearOperatorBase<FineField> &Linop, OperatorFunction<FineField> &smoother,
|
||
|
const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
|
||
|
const RealD base_tolerance, const RealD relax){
|
||
|
std::cout << GridLogMessage << "Testing quality of uncompressed evecs (after smoothing)" << std::endl;
|
||
|
|
||
|
GridBase* FineGrid = basis[0].Grid();
|
||
|
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||
|
|
||
|
bool fail = false;
|
||
|
FineField evec(FineGrid), Mevec(FineGrid), evec_sm(FineGrid);
|
||
|
for(int i=0;i<compressed_evecs.size();i++){
|
||
|
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
|
||
|
uncompress(evec, i, basis, compressed_evecs);
|
||
|
|
||
|
std::cout << GridLogMessage << "Smoothing evec " << i << std::endl;
|
||
|
smoother(Linop, evec, evec_sm);
|
||
|
|
||
|
std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
|
||
|
std::cout << GridLogMessage << "Linop" << std::endl;
|
||
|
Linop.HermOp(evec_sm, Mevec);
|
||
|
std::cout << GridLogMessage << "Linalg" << std::endl;
|
||
|
Mevec = Mevec - evals[i]*evec_sm;
|
||
|
|
||
|
std::cout << GridLogMessage << "Resid" << std::endl;
|
||
|
RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
|
||
|
RealD res = sqrt(norm2(Mevec));
|
||
|
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
|
||
|
if(res > tol) fail = true;
|
||
|
}
|
||
|
return fail;
|
||
|
}
|
||
|
|
||
|
//Compare uncompressed evecs to original evecs
|
||
|
void compareEvecs(const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<FineField> &orig_evecs){
|
||
|
std::cout << GridLogMessage << "Comparing uncompressed evecs to original evecs" << std::endl;
|
||
|
|
||
|
GridBase* FineGrid = basis[0].Grid();
|
||
|
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||
|
|
||
|
FineField evec(FineGrid), diff(FineGrid);
|
||
|
for(int i=0;i<compressed_evecs.size();i++){
|
||
|
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
|
||
|
uncompress(evec, i, basis, compressed_evecs);
|
||
|
diff = orig_evecs[i] - evec;
|
||
|
RealD res = sqrt(norm2(diff));
|
||
|
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
template<class Fobj,class CComplex,int nbasis>
|
||
|
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
|
||
|
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||
|
typedef Lattice<CComplex> CoarseScalar;
|
||
|
typedef Lattice<CoarseSiteVector> CoarseField;
|
||
|
typedef Lattice<Fobj> FineField;
|
||
|
|
||
|
GridStopWatch timer;
|
||
|
|
||
|
GridBase* FineGrid = basis[0].Grid();
|
||
|
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||
|
|
||
|
FineField v1(FineGrid), v2(FineGrid);
|
||
|
|
||
|
//Start with a cold start
|
||
|
for(int i=0;i<basis.size();i++){
|
||
|
autoView( b_ , basis[i], CpuWrite);
|
||
|
}
|
||
|
for(int i=0;i<compressed_evecs.size();i++){
|
||
|
autoView( b_ , compressed_evecs[i], CpuWrite);
|
||
|
}
|
||
|
{
|
||
|
autoView( b_, v1, CpuWrite );
|
||
|
}
|
||
|
|
||
|
timer.Start();
|
||
|
blockPromote(compressed_evecs[0],v1,basis);
|
||
|
timer.Stop();
|
||
|
std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
|
||
|
|
||
|
//Test to ensure it is actually doing a cold start by repeating
|
||
|
for(int i=0;i<basis.size();i++){
|
||
|
autoView( b_ , basis[i], CpuWrite);
|
||
|
}
|
||
|
for(int i=0;i<compressed_evecs.size();i++){
|
||
|
autoView( b_ , compressed_evecs[i], CpuWrite);
|
||
|
}
|
||
|
{
|
||
|
autoView( b_, v1, CpuWrite );
|
||
|
}
|
||
|
|
||
|
timer.Reset();
|
||
|
timer.Start();
|
||
|
blockPromote(compressed_evecs[0],v1,basis);
|
||
|
timer.Stop();
|
||
|
std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
|
||
|
}
|
||
|
|
||
|
struct Args{
|
||
|
int Ls;
|
||
|
RealD mass;
|
||
|
RealD M5;
|
||
|
bool is_cps_cfg;
|
||
|
RealD mobius_scale; //b+c
|
||
|
|
||
|
CPSLanczosParams fine;
|
||
|
double coarse_relax_tol;
|
||
|
|
||
|
std::vector<int> blockSize;
|
||
|
std::vector<int> GparityDirs;
|
||
|
|
||
|
bool write_fine;
|
||
|
std::string write_fine_file;
|
||
|
bool read_fine;
|
||
|
std::string read_fine_file;
|
||
|
|
||
|
int basis_size;
|
||
|
|
||
|
Args(){
|
||
|
blockSize = {2,2,2,2,2};
|
||
|
GparityDirs = {1,1,1}; //1 for each GP direction
|
||
|
|
||
|
Ls = 12;
|
||
|
mass = 0.01;
|
||
|
M5 = 1.8;
|
||
|
is_cps_cfg = false;
|
||
|
mobius_scale = 2;
|
||
|
|
||
|
fine.alpha = 2;
|
||
|
fine.beta = 0.1;
|
||
|
fine.ch_ord = 100;
|
||
|
fine.N_use = 70;
|
||
|
fine.N_get = 60;
|
||
|
fine.N_true_get = 60;
|
||
|
fine.stop_rsd = 1e-8;
|
||
|
fine.maxits = 10000;
|
||
|
|
||
|
coarse_relax_tol = 1e5;
|
||
|
|
||
|
write_fine = false;
|
||
|
read_fine = false;
|
||
|
|
||
|
basis_size = 100;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
GparityWilsonImplD::ImplParams setupGparityParams(const std::vector<int> &GparityDirs){
|
||
|
//Setup G-parity BCs
|
||
|
assert(Nd == 4);
|
||
|
std::vector<int> dirs4(4);
|
||
|
for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
|
||
|
dirs4[3] = 0; //periodic gauge BC in time
|
||
|
|
||
|
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
|
||
|
ConjugateGimplD::setDirections(dirs4); //gauge BC
|
||
|
|
||
|
GparityWilsonImplD::ImplParams Params;
|
||
|
for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
|
||
|
Params.twists[Nd-1] = 1; //APBC in time direction
|
||
|
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
|
||
|
return Params;
|
||
|
}
|
||
|
|
||
|
WilsonImplD::ImplParams setupParams(){
|
||
|
WilsonImplD::ImplParams Params;
|
||
|
Complex one(1.0);
|
||
|
Complex mone(-1.0);
|
||
|
for(int i=0;i<Nd-1;i++) Params.boundary_phases[i] = one;
|
||
|
Params.boundary_phases[Nd-1] = mone;
|
||
|
return Params;
|
||
|
}
|
||
|
|
||
|
template<int nbasis, typename ActionType>
|
||
|
void run_b(ActionType &action, const std::string &config, const Args &args){
|
||
|
//Fine grids
|
||
|
GridCartesian * UGrid = (GridCartesian*)action.GaugeGrid();
|
||
|
GridRedBlackCartesian * UrbGrid = (GridRedBlackCartesian*)action.GaugeRedBlackGrid();
|
||
|
GridCartesian * FGrid = (GridCartesian*)action.FermionGrid();
|
||
|
GridRedBlackCartesian * FrbGrid = (GridRedBlackCartesian*)action.FermionRedBlackGrid();
|
||
|
|
||
|
//Setup the coarse grids
|
||
|
auto fineLatt = GridDefaultLatt();
|
||
|
Coordinate coarseLatt(4);
|
||
|
for (int d=0;d<4;d++){
|
||
|
coarseLatt[d] = fineLatt[d]/args.blockSize[d]; assert(coarseLatt[d]*args.blockSize[d]==fineLatt[d]);
|
||
|
}
|
||
|
|
||
|
std::cout << GridLogMessage<< " 5d coarse lattice is ";
|
||
|
for (int i=0;i<4;i++){
|
||
|
std::cout << coarseLatt[i]<<"x";
|
||
|
}
|
||
|
int cLs = args.Ls/args.blockSize[4]; assert(cLs*args.blockSize[4]==args.Ls);
|
||
|
std::cout << cLs<<std::endl;
|
||
|
|
||
|
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||
|
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
|
||
|
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
|
||
|
typedef vTComplex CComplex;
|
||
|
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||
|
typedef Lattice<CComplex> CoarseScalar;
|
||
|
typedef Lattice<CoarseSiteVector> CoarseField;
|
||
|
|
||
|
typedef typename ActionType::FermionField FermionField;
|
||
|
|
||
|
SchurDiagTwoOperator<ActionType,FermionField> SchurOp(action);
|
||
|
|
||
|
typedef typename ActionType::SiteSpinor SiteSpinor;
|
||
|
|
||
|
const CPSLanczosParams &fine = args.fine;
|
||
|
|
||
|
//Do the fine Lanczos
|
||
|
std::vector<RealD> evals;
|
||
|
std::vector<FermionField> evecs;
|
||
|
|
||
|
if(args.read_fine){
|
||
|
evals.resize(fine.N_true_get);
|
||
|
evecs.resize(fine.N_true_get, FrbGrid);
|
||
|
|
||
|
std::string evals_file = args.read_fine_file + "_evals.xml";
|
||
|
std::string evecs_file = args.read_fine_file + "_evecs.scidac";
|
||
|
|
||
|
std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
|
||
|
XmlReader RDx(evals_file);
|
||
|
read(RDx,"evals",evals);
|
||
|
|
||
|
assert(evals.size()==fine.N_true_get);
|
||
|
|
||
|
std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
|
||
|
emptyUserRecord record;
|
||
|
Grid::ScidacReader RD ;
|
||
|
RD.open(evecs_file);
|
||
|
for(int k=0;k<fine.N_true_get;k++) {
|
||
|
evecs[k].Checkerboard()=Odd;
|
||
|
RD.readScidacFieldRecord(evecs[k],record);
|
||
|
|
||
|
}
|
||
|
RD.close();
|
||
|
}else{
|
||
|
int Nstop = fine.Nstop(); //==N_true_get
|
||
|
int Nm = fine.Nm();
|
||
|
int Nk = fine.Nk();
|
||
|
RealD resid = fine.stop_rsd;
|
||
|
int MaxIt = fine.maxits;
|
||
|
|
||
|
assert(nbasis<=Nm);
|
||
|
Chebyshev<FermionField> Cheby(fine.getChebyParams());
|
||
|
FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
|
||
|
PlainHermOp<FermionField> Op(SchurOp);
|
||
|
|
||
|
evals.resize(Nm);
|
||
|
evecs.resize(Nm,FrbGrid);
|
||
|
|
||
|
ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
|
||
|
|
||
|
FermionField src(FrbGrid);
|
||
|
typedef typename FermionField::scalar_type Scalar;
|
||
|
src=Scalar(1.0);
|
||
|
src.Checkerboard() = Odd;
|
||
|
|
||
|
int Nconv;
|
||
|
IRL.calc(evals, evecs,src,Nconv,false);
|
||
|
if(Nconv < Nstop) assert(0 && "Fine lanczos failed to converge the required number of evecs"); //algorithm doesn't consider this a failure
|
||
|
if(Nconv > Nstop){
|
||
|
//Yes this potentially throws away some evecs but it is better than having a random number of evecs between Nstop and Nm!
|
||
|
evals.resize(Nstop);
|
||
|
evecs.resize(Nstop, FrbGrid);
|
||
|
}
|
||
|
|
||
|
if(args.write_fine){
|
||
|
std::string evals_file = args.write_fine_file + "_evals.xml";
|
||
|
std::string evecs_file = args.write_fine_file + "_evecs.scidac";
|
||
|
|
||
|
std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
|
||
|
|
||
|
emptyUserRecord record;
|
||
|
Grid::ScidacWriter WR(FrbGrid->IsBoss());
|
||
|
WR.open(evecs_file);
|
||
|
for(int k=0;k<evecs.size();k++) {
|
||
|
WR.writeScidacFieldRecord(evecs[k],record);
|
||
|
}
|
||
|
WR.close();
|
||
|
|
||
|
std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
|
||
|
|
||
|
XmlWriter WRx(evals_file);
|
||
|
write(WRx,"evals",evals);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//Do the compression
|
||
|
LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
|
||
|
std::vector<FermionField> basis(nbasis,FrbGrid);
|
||
|
std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
|
||
|
|
||
|
compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
|
||
|
|
||
|
compareBlockPromoteTimings(basis, compressed_evecs);
|
||
|
|
||
|
//Compare uncompressed and original evecs
|
||
|
compressor.compareEvecs(basis, compressed_evecs, evecs);
|
||
|
|
||
|
//Create the smoother
|
||
|
Chebyshev<FermionField> smoother(fine.getChebyParams());
|
||
|
|
||
|
//Test the quality of the uncompressed evecs
|
||
|
assert( compressor.testCompression(SchurOp, smoother, basis, compressed_evecs, evals, fine.stop_rsd, args.coarse_relax_tol) );
|
||
|
}
|
||
|
|
||
|
template<typename ActionType>
|
||
|
void run(ActionType &action, const std::string &config, const Args &args){
|
||
|
switch(args.basis_size){
|
||
|
case 50:
|
||
|
return run_b<50>(action,config,args);
|
||
|
case 100:
|
||
|
return run_b<100>(action,config,args);
|
||
|
case 150:
|
||
|
return run_b<150>(action,config,args);
|
||
|
case 200:
|
||
|
return run_b<200>(action,config,args);
|
||
|
case 250:
|
||
|
return run_b<250>(action,config,args);
|
||
|
case 300:
|
||
|
return run_b<300>(action,config,args);
|
||
|
case 350:
|
||
|
return run_b<350>(action,config,args);
|
||
|
case 400:
|
||
|
return run_b<400>(action,config,args);
|
||
|
default:
|
||
|
assert(0 && "Unsupported basis size: allowed values are 50,100,200,250,300,350,400");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
//Note: because we rely upon physical properties we must use a "real" gauge configuration
|
||
|
int main (int argc, char ** argv) {
|
||
|
Grid_init(&argc,&argv);
|
||
|
GridLogIRL.TimingMode(1);
|
||
|
|
||
|
if(argc < 3){
|
||
|
std::cout << GridLogMessage << "Usage: <exe> <config file> <gparity dirs> <options>" << std::endl;
|
||
|
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
|
||
|
std::cout << GridLogMessage << "Options:" << std::endl;
|
||
|
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
|
||
|
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
|
||
|
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
|
||
|
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
|
||
|
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
|
||
|
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--action : Set the action from 'DWF', 'Mobius' (default Mobius)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--mobius_scale : Set the Mobius scale b+c (default 2)" << std::endl;
|
||
|
std::cout << GridLogMessage << "--basis_size : Set the basis size from 50,100,150,200,250,300,350,400 (default 100)" << std::endl;
|
||
|
|
||
|
Grid_finalize();
|
||
|
return 1;
|
||
|
}
|
||
|
std::string config = argv[1];
|
||
|
|
||
|
Args args;
|
||
|
GridCmdOptionIntVector(argv[2], args.GparityDirs);
|
||
|
assert(args.GparityDirs.size() == 3);
|
||
|
|
||
|
std::string action_s = "Mobius";
|
||
|
|
||
|
for(int i=3;i<argc;i++){
|
||
|
std::string sarg = argv[i];
|
||
|
if(sarg == "--Ls"){
|
||
|
args.Ls = std::stoi(argv[i+1]);
|
||
|
std::cout << GridLogMessage << "Set Ls to " << args.Ls << std::endl;
|
||
|
}else if(sarg == "--mass"){
|
||
|
std::istringstream ss(argv[i+1]); ss >> args.mass;
|
||
|
std::cout << GridLogMessage << "Set quark mass to " << args.mass << std::endl;
|
||
|
}else if(sarg == "--block"){
|
||
|
GridCmdOptionIntVector(argv[i+1], args.blockSize);
|
||
|
assert(args.blockSize.size() == 5);
|
||
|
std::cout << GridLogMessage << "Set block size to ";
|
||
|
for(int q=0;q<5;q++) std::cout << args.blockSize[q] << " ";
|
||
|
std::cout << std::endl;
|
||
|
}else if(sarg == "--is_cps_cfg"){
|
||
|
args.is_cps_cfg = true;
|
||
|
}else if(sarg == "--write_irl_templ"){
|
||
|
XmlWriter writer("irl_templ.xml");
|
||
|
write(writer,"Params",args.fine);
|
||
|
Grid_finalize();
|
||
|
return 0;
|
||
|
}else if(sarg == "--read_irl_fine"){
|
||
|
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
|
||
|
XmlReader reader(argv[i+1]);
|
||
|
read(reader, "Params", args.fine);
|
||
|
}else if(sarg == "--write_fine"){
|
||
|
args.write_fine = true;
|
||
|
args.write_fine_file = argv[i+1];
|
||
|
}else if(sarg == "--read_fine"){
|
||
|
args.read_fine = true;
|
||
|
args.read_fine_file = argv[i+1];
|
||
|
}else if(sarg == "--coarse_relax_tol"){
|
||
|
std::istringstream ss(argv[i+1]); ss >> args.coarse_relax_tol;
|
||
|
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << args.coarse_relax_tol << std::endl;
|
||
|
}else if(sarg == "--action"){
|
||
|
action_s = argv[i+1];
|
||
|
std::cout << "Action set to " << action_s << std::endl;
|
||
|
}else if(sarg == "--mobius_scale"){
|
||
|
std::istringstream ss(argv[i+1]); ss >> args.mobius_scale;
|
||
|
std::cout << GridLogMessage << "Set Mobius scale to " << args.mobius_scale << std::endl;
|
||
|
}else if(sarg == "--basis_size"){
|
||
|
args.basis_size = std::stoi(argv[i+1]);
|
||
|
std::cout << GridLogMessage << "Set basis size to " << args.basis_size << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//Fine grids
|
||
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||
|
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||
|
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(args.Ls,UGrid);
|
||
|
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(args.Ls,UGrid);
|
||
|
|
||
|
LatticeGaugeField Umu(UGrid);
|
||
|
|
||
|
bool is_gparity = false;
|
||
|
for(auto g : args.GparityDirs) if(g) is_gparity = true;
|
||
|
|
||
|
double bmc = 1.;
|
||
|
double b = (args.mobius_scale + bmc)/2.; // b = 1/2 [ (b+c) + (b-c) ]
|
||
|
double c = (args.mobius_scale - bmc)/2.; // c = 1/2 [ (b+c) - (b-c) ]
|
||
|
|
||
|
if(is_gparity){
|
||
|
GparityWilsonImplD::ImplParams Params = setupGparityParams(args.GparityDirs);
|
||
|
readConfiguration<ConjugateGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
|
||
|
|
||
|
if(action_s == "DWF"){
|
||
|
GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
|
||
|
run(action, config, args);
|
||
|
}else if(action_s == "Mobius"){
|
||
|
GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
|
||
|
run(action, config, args);
|
||
|
}
|
||
|
}else{
|
||
|
WilsonImplD::ImplParams Params = setupParams();
|
||
|
readConfiguration<PeriodicGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
|
||
|
|
||
|
if(action_s == "DWF"){
|
||
|
DomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
|
||
|
run(action, config, args);
|
||
|
}else if(action_s == "Mobius"){
|
||
|
MobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
|
||
|
run(action, config, args);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Grid_finalize();
|
||
|
}
|