1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/core/Test_fft_gfix.cc

301 lines
9.3 KiB
C++
Raw Normal View History

/*************************************************************************************
grid` physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cshift.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
// ImplComplex cmi(0.0,-1.0);
ComplexD cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=zero;
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,RealD & alpha,int maxiter,RealD Omega_tol, RealD Phi_tol) {
GridBase *grid = Umu._grid;
RealD org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
RealD org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
RealD old_trace = org_link_trace;
RealD trG;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
//trG = SteepestDescentStep(U,alpha,dmuAmu);
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
RealD plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
RealD link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
RealD Phi = 1.0 - old_trace / link_trace ;
RealD Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
};
static RealD SteepestDescentStep(std::vector<GaugeMat> &U,RealD & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
RealD vol = grid->gSites();
RealD trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static RealD FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,RealD & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
RealD vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=zero;
LatticeComplex pmu(grid);
2016-11-08 13:42:12 +00:00
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
//////////////////////////////////
std::vector<int> latt_size = grid->GlobalDimensions();
std::vector<int> coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
ComplexD psqMax(16.0);
Fp = psqMax*one/psq;
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
GaugeMat ciadmam(grid);
ComplexD cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
RealD trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,RealD & alpha, GaugeMat &dmuAmu) {
GridBase *grid = g._grid;
ComplexD cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
/*
////////////////////////////////////////////////////////////////
// NB The FT for fields living on links has an extra phase in it
// Could add these to the FFT class as a later task since this code
// might be reused elsewhere ????
////////////////////////////////////////////////////////////////
static void InverseFourierTransformAmu(FFT &theFFT,const std::vector<GaugeMat> &Ap,std::vector<GaugeMat> &Ax) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
GaugeMat Apha(grid);
ComplexD ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(pmu * (0.5 *ci)); // e(ipmu/2) since Amu(x+mu/2)
Apha = Ap[mu] * pha;
theFFT.FFT_all_dim(Apha,Ax[mu],FFT::backward);
}
}
static void FourierTransformAmu(FFT & theFFT,const std::vector<GaugeMat> &Ax,std::vector<GaugeMat> &Ap) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
ComplexD ci(0.0,1.0);
// Sign convention for FFTW calls:
// A(x)= Sum_p e^ipx A(p) / V
// A(p)= Sum_p e^-ipx A(x)
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(-pmu * (0.5 *ci)); // e(+ipmu/2) since Amu(x+mu/2)
theFFT.FFT_all_dim(Ax[mu],Ap[mu],FFT::backward);
Ap[mu] = Ap[mu] * pha;
}
}
*/
};
int main (int argc, char ** argv)
{
std::vector<int> seeds({1,2,3,4});
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout( { vComplexD::Nsimd(),1,1,1});
std::vector<int> mpi_layout = GridDefaultMpi();
int vol = 1;
for(int d=0;d<latt_size.size();d++){
vol = vol * latt_size[d];
}
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds); // naughty seeding
GridParallelRNG pRNG(&GRID); pRNG.SeedFixedIntegers(seeds);
FFT theFFT(&GRID);
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge *" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
2016-11-08 13:42:12 +00:00
LatticeGaugeField Umu(&GRID);
LatticeGaugeField Uorg(&GRID);
LatticeColourMatrix g(&GRID); // Gauge xform
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
Uorg=Umu;
SU3::RandomGaugeTransform(pRNG,Umu,g); // Unit gauge
2016-11-08 13:42:12 +00:00
RealD plaq=WilsonLoops<PeriodicGimplF>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
RealD alpha=0.1;
2016-11-08 13:42:12 +00:00
FourierAcceleratedGaugeFixer<PeriodicGimplF>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-10, 1.0e-10);
2016-11-08 13:42:12 +00:00
plaq=WilsonLoops<PeriodicGimplF>::avgPlaquette(Umu);
std::cout << " Final plaquette "<<plaq << std::endl;
Uorg = Uorg - Umu;
std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing non-unit configuration *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
Grid_finalize();
}