1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/tests/Test_gparity.cc

267 lines
9.1 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_gparity.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
int main (int argc, char ** argv)
{
const int nu = 3;
Grid_init(&argc,&argv);
const int Ls=4;
const int L =4;
std::vector<int> latt_2f(Nd,L);
std::vector<int> latt_1f(Nd,L); latt_1f[nu] = 2*L;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi(); //node layout
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
GridCartesian * FGrid_1f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
GridCartesian * UGrid_2f = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
GridCartesian * FGrid_2f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu_2f(UGrid_2f);
SU3::HotConfiguration(RNG4_2f,Umu_2f);
LatticeFermion src (FGrid_2f);
LatticeFermion tmpsrc(FGrid_2f);
FermionField src_2f(FGrid_2f);
LatticeFermion src_1f(FGrid_1f);
// Replicate fermion source
random(RNG5_2f,src);
PokeIndex<0>(src_2f,src,0);
tmpsrc=src*2.0;
PokeIndex<0>(src_2f,tmpsrc,1);
LatticeFermion result_1f(FGrid_1f); result_1f=zero;
LatticeGaugeField Umu_1f(UGrid_1f);
Replicate(Umu_2f,Umu_1f);
//Coordinate grid for reference
LatticeInteger xcoor_1f(UGrid_1f);
LatticeCoordinate(xcoor_1f,nu);
//Copy-conjugate the gauge field
//First C-shift the lattice by Lx/2
{
LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
Umu_1f = where( xcoor_1f >= Integer(L), Umu_shift, Umu_1f );
// hack test to check the same
Replicate(Umu_2f,Umu_shift);
Umu_shift=Umu_shift-Umu_1f;
cout << GridLogMessage << "Umu diff " << norm2(Umu_shift)<<std::endl;
//Make the gauge field antiperiodic in nu-direction
LatticeColourMatrix Unu(UGrid_1f);
Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
Unu = where(xcoor_1f == Integer(2*L-1), -Unu, Unu);
PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
}
//Coordinate grid for reference
LatticeInteger xcoor_1f5(FGrid_1f);
LatticeCoordinate(xcoor_1f5,1+nu);
Replicate(src,src_1f);
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
RealD mass=0.0;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5);
LatticeFermion src_o_1f(FrbGrid_1f);
LatticeFermion result_o_1f(FrbGrid_1f);
pickCheckerboard(Odd,src_o_1f,src_1f);
result_o_1f=zero;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o_1f,result_o_1f);
// const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
GparityDomainWallFermionR::ImplParams params;
params.twists = twists;
GparityDomainWallFermionR GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params);
for(int disp=-1;disp<=1;disp+=2)
for(int mu=0;mu<5;mu++)
{
FermionField Dsrc_2f(FGrid_2f);
LatticeFermion Dsrc_1f(FGrid_1f);
LatticeFermion Dsrc_2freplica(FGrid_1f);
LatticeFermion Dsrc_2freplica0(FGrid_1f);
LatticeFermion Dsrc_2freplica1(FGrid_1f);
if ( mu ==0 ) {
std::cout << GridLogMessage<< " Cross checking entire hopping term"<<std::endl;
GPDdwf.Dhop(src_2f,Dsrc_2f,DaggerNo);
Ddwf.Dhop(src_1f,Dsrc_1f,DaggerNo);
} else {
std::cout << GridLogMessage<< " Cross checking mu="<<mu<< " disp="<< disp<<std::endl;
GPDdwf.DhopDir(src_2f,Dsrc_2f,mu,disp);
Ddwf.DhopDir(src_1f,Dsrc_1f,mu,disp);
}
std::cout << GridLogMessage << "S norms "<< norm2(src_2f) << " " << norm2(src_1f) <<std::endl;
std::cout << GridLogMessage << "D norms "<< norm2(Dsrc_2f)<< " " << norm2(Dsrc_1f) <<std::endl;
LatticeFermion Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
LatticeFermion Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
// Dsrc_2f1 = Dsrc_2f1 - Dsrc_2f0;
// std::cout << GridLogMessage << " Cross check two halves " <<norm2(Dsrc_2f1)<<std::endl;
Replicate(Dsrc_2f0,Dsrc_2freplica0);
Replicate(Dsrc_2f1,Dsrc_2freplica1);
Dsrc_2freplica = where( xcoor_1f5 >= Integer(L), Dsrc_2freplica1,Dsrc_2freplica0 );
Dsrc_2freplica = Dsrc_2freplica - Dsrc_1f ;
std::cout << GridLogMessage << " Cross check against doubled latt " <<norm2(Dsrc_2freplica)<<std::endl;
// std::cout << Dsrc_2f <<std::endl;
}
{
FermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
FermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
FermionField chi_e (FrbGrid_2f);
FermionField chi_o (FrbGrid_2f);
FermionField dchi_e (FrbGrid_2f);
FermionField dchi_o (FrbGrid_2f);
FermionField phi_e (FrbGrid_2f);
FermionField phi_o (FrbGrid_2f);
FermionField dphi_e (FrbGrid_2f);
FermionField dphi_o (FrbGrid_2f);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
GPDdwf.Meooe(chi_e,dchi_o);
GPDdwf.Meooe(chi_o,dchi_e);
GPDdwf.MeooeDag(phi_e,dphi_o);
GPDdwf.MeooeDag(phi_o,dphi_e);
ComplexD pDce = innerProduct(phi_e,dchi_e);
ComplexD pDco = innerProduct(phi_o,dchi_o);
ComplexD cDpe = innerProduct(chi_e,dphi_e);
ComplexD cDpo = innerProduct(chi_o,dphi_o);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDce-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDco-conj(cDpe) <<std::endl;
}
FermionField result_2f(FGrid_2f); result_2f=zero;
FermionField src_o_2f(FrbGrid_2f);
FermionField result_o_2f(FrbGrid_2f);
pickCheckerboard(Odd,src_o_2f,src_2f);
result_o_2f=zero;
ConjugateGradient<FermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDomainWallFermionR,FermionField> HermOpEO2f(GPDdwf);
CG2f(HermOpEO2f,src_o_2f,result_o_2f);
std::cout << "2f cb "<<result_o_2f.checkerboard<<std::endl;
std::cout << "1f cb "<<result_o_1f.checkerboard<<std::endl;
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
LatticeFermion res0o (FrbGrid_2f);
LatticeFermion res1o (FrbGrid_2f);
LatticeFermion res0 (FGrid_2f);
LatticeFermion res1 (FGrid_2f);
res0=zero;
res1=zero;
res0o = PeekIndex<0>(result_o_2f,0);
res1o = PeekIndex<0>(result_o_2f,1);
std::cout << "res cb "<<res0o.checkerboard<<std::endl;
std::cout << "res cb "<<res1o.checkerboard<<std::endl;
setCheckerboard(res0,res0o);
setCheckerboard(res1,res1o);
LatticeFermion replica (FGrid_1f);
LatticeFermion replica0(FGrid_1f);
LatticeFermion replica1(FGrid_1f);
Replicate(res0,replica0);
Replicate(res1,replica1);
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
replica0 = zero;
setCheckerboard(replica0,result_o_1f);
std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
replica = replica - replica0;
std::cout << "Norm2 of difference in solutions is " <<norm2(replica)<<std::endl;
Grid_finalize();
}