1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00
Grid/benchmarks/Benchmark_ITT.cc

739 lines
30 KiB
C++
Raw Normal View History

/*************************************************************************************
2017-08-19 23:10:12 +01:00
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_memory_bandwidth.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
2017-08-25 09:25:54 +01:00
std::vector<int> L_list;
std::vector<int> Ls_list;
std::vector<double> mflop_list;
double mflop_ref;
double mflop_ref_err;
int NN_global;
2017-08-19 23:10:12 +01:00
struct time_statistics{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v){
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
2020-10-14 03:18:51 +01:00
<<"bytes\t MB/s uni (err/min/max) \t\t MB/s bidi (err/min/max)"<<std::endl;
2017-08-19 23:10:12 +01:00
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
struct controls {
int Opt;
int CommsOverlap;
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
};
class Benchmark {
public:
static void Decomposition (void ) {
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
std::cout<<GridLogMessage<<"\tvReal : "<<sizeof(vReal )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealD : "<<sizeof(vRealD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplex : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexF : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexD : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
static void Comms(void)
{
2017-08-25 11:41:01 +01:00
int Nloop=200;
2017-08-19 23:10:12 +01:00
int nmu=0;
int maxlat=32;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
2017-08-19 23:10:12 +01:00
2017-08-25 09:25:54 +01:00
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
2017-08-19 23:10:12 +01:00
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
comms_header();
2020-05-08 23:54:50 +01:00
for(int lat=16;lat<=maxlat;lat+=8){
// for(int Ls=8;Ls<=8;Ls*=2){
{ int Ls=12;
2017-08-19 23:10:12 +01:00
Coordinate latt_size ({lat*mpi_layout[0],
2017-08-19 23:10:12 +01:00
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
2017-08-19 23:10:12 +01:00
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
//Grid.ShmBufferFreeAll();
uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
2017-08-19 23:10:12 +01:00
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
// bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
2017-08-19 23:10:12 +01:00
}
// int ncomm;
2017-08-19 23:10:12 +01:00
double dbytes;
2017-08-25 09:25:54 +01:00
for(int dir=0;dir<8;dir++) {
int mu =dir % 4;
if (mpi_layout[mu]>1 ) {
2017-08-19 23:10:12 +01:00
std::vector<double> times(Nloop);
for(int i=0;i<Nloop;i++){
2017-08-19 23:10:12 +01:00
dbytes=0;
double start=usecond();
2017-08-19 23:10:12 +01:00
int xmit_to_rank;
int recv_from_rank;
2017-08-19 23:10:12 +01:00
if ( dir == mu ) {
int comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
} else {
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank,
bytes);
dbytes+=bytes;
double stop=usecond();
t_time[i] = stop-start; // microseconds
2017-08-19 23:10:12 +01:00
}
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
<<xbytes/timestat.mean<<" \t "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " \t "
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
<< "\t\t"<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
}
2017-08-19 23:10:12 +01:00
}
for(int d=0;d<8;d++){
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
}
}
2017-08-19 23:10:12 +01:00
return;
}
2020-10-07 02:48:35 +01:00
2017-08-19 23:10:12 +01:00
static void Memory(void)
{
const int Nvec=8;
typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
typedef iVector<vReal,Nvec> Vec;
Coordinate simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2017-08-27 13:46:02 +01:00
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
2018-01-24 13:23:59 +00:00
// uint64_t NP;
2017-08-27 13:46:02 +01:00
uint64_t NN;
2020-05-08 23:54:50 +01:00
uint64_t lmax=32;
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
2017-08-19 23:10:12 +01:00
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
2020-05-08 23:54:50 +01:00
for(int lat=8;lat<=lmax;lat+=8){
2017-08-19 23:10:12 +01:00
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
2017-08-19 23:10:12 +01:00
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
2018-01-24 13:23:59 +00:00
// NP= Grid.RankCount();
2017-08-27 13:46:02 +01:00
NN =Grid.NodeCount();
2017-08-19 23:10:12 +01:00
Vec rn ; random(sRNG,rn);
2020-05-25 16:36:53 +01:00
LatticeVec z(&Grid); z=Zero();
LatticeVec x(&Grid); x=Zero();
LatticeVec y(&Grid); y=Zero();
2017-08-19 23:10:12 +01:00
double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=a*x-y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3)
2017-08-27 13:46:02 +01:00
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
2017-08-19 23:10:12 +01:00
}
};
2020-05-08 23:54:50 +01:00
2020-10-07 02:48:35 +01:00
static void SU4(void)
{
const int Nc4=4;
typedef Lattice< iMatrix< vComplexF,Nc4> > LatticeSU4;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking z = y*x SU(4) bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t NN;
uint64_t lmax=32;
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
NN =Grid.NodeCount();
LatticeSU4 z(&Grid); z=Zero();
LatticeSU4 x(&Grid); x=Zero();
LatticeSU4 y(&Grid); y=Zero();
// double a=2.0;
2020-10-07 02:48:35 +01:00
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nc4*Nc4*(6+(Nc4-1)*8);// mul,add
double bytes=3.0*vol*Nc4*Nc4*2*sizeof(RealF);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
}
};
2020-05-08 23:54:50 +01:00
static double DWF(int Ls,int L)
2017-08-25 09:25:54 +01:00
{
2020-05-08 23:54:50 +01:00
RealD mass=0.1;
2017-08-25 09:25:54 +01:00
RealD M5 =1.8;
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
2020-11-07 12:32:16 +00:00
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
2017-08-25 09:25:54 +01:00
2020-11-07 12:32:16 +00:00
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
2020-05-08 23:54:50 +01:00
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
2017-08-25 09:25:54 +01:00
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Nc : "<<Nc<<std::endl;
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
2020-05-08 23:54:50 +01:00
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
2017-08-25 09:25:54 +01:00
2020-05-08 23:54:50 +01:00
2017-08-25 09:25:54 +01:00
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
2020-05-08 23:54:50 +01:00
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
2017-08-25 09:25:54 +01:00
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
2020-05-08 23:54:50 +01:00
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
2017-08-25 09:25:54 +01:00
2020-05-08 23:54:50 +01:00
///////// Source preparation ////////////
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
2020-05-08 23:54:50 +01:00
Fermion src (FGrid); random(RNG5,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
Action Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
2017-08-25 09:25:54 +01:00
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
const int num_cases = 4;
2020-05-08 23:54:50 +01:00
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
2017-08-25 09:25:54 +01:00
controls Cases [] = {
2020-05-08 23:54:50 +01:00
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential }
2017-08-25 09:25:54 +01:00
};
for(int c=0;c<num_cases;c++) {
2020-05-08 23:54:50 +01:00
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
2017-08-25 09:25:54 +01:00
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
2020-05-08 23:54:50 +01:00
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
int nwarm = 10;
2017-08-25 09:25:54 +01:00
double t0=usecond();
2020-05-08 23:54:50 +01:00
FGrid->Barrier();
2017-08-25 09:25:54 +01:00
for(int i=0;i<nwarm;i++){
2020-05-08 23:54:50 +01:00
Dw.DhopEO(src_o,r_e,DaggerNo);
2017-08-25 09:25:54 +01:00
}
2020-05-08 23:54:50 +01:00
FGrid->Barrier();
2017-08-25 09:25:54 +01:00
double t1=usecond();
2020-10-09 03:19:20 +01:00
uint64_t ncall = 500;
2020-05-08 23:54:50 +01:00
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
2017-08-25 09:25:54 +01:00
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
2020-05-08 23:54:50 +01:00
Dw.DhopEO(src_o,r_e,DaggerNo);
2017-08-25 09:25:54 +01:00
t1=usecond();
t_time[i] = t1-t0;
}
2020-05-08 23:54:50 +01:00
FGrid->Barrier();
2017-08-25 09:25:54 +01:00
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
// Nc=3 gives
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
#if 0
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + Nd*Nc*Ns + Nd*Nc*Ns*2;
2020-11-13 02:57:58 +00:00
#else
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns + 2*Nd*Nc*Ns*2;
#endif
double flops=(fps*volume)/2;
2017-08-25 09:25:54 +01:00
double mf_hi, mf_lo, mf_err;
2017-08-19 23:10:12 +01:00
2017-08-25 09:25:54 +01:00
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
2017-08-25 09:25:54 +01:00
}
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage <<fmt << std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage ;
2017-08-25 09:25:54 +01:00
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
return mflops_best;
}
2017-08-19 23:10:12 +01:00
2020-05-08 23:54:50 +01:00
static double Staggered(int L)
{
2017-08-19 23:10:12 +01:00
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
2017-08-25 09:25:54 +01:00
std::vector<double> mflops_all;
2017-08-19 23:10:12 +01:00
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
2020-11-13 02:57:58 +00:00
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
2020-05-08 23:54:50 +01:00
2020-11-13 02:57:58 +00:00
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
2020-05-08 23:54:50 +01:00
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
2017-08-19 23:10:12 +01:00
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
2017-08-25 09:25:54 +01:00
NN_global=NN;
2017-08-19 23:10:12 +01:00
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "Benchmark ImprovedStaggered on "<<L<<"^4 local volume "<<std::endl;
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
2020-05-08 23:54:50 +01:00
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
2017-08-19 23:10:12 +01:00
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
2020-05-08 23:54:50 +01:00
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
2017-08-19 23:10:12 +01:00
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
2020-05-08 23:54:50 +01:00
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
2017-08-19 23:10:12 +01:00
2020-05-08 23:54:50 +01:00
typedef ImprovedStaggeredFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
2017-08-19 23:10:12 +01:00
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
2017-08-19 23:10:12 +01:00
2020-05-08 23:54:50 +01:00
typename Action::ImplParams params;
Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
2017-08-19 23:10:12 +01:00
2020-05-08 23:54:50 +01:00
///////// Source preparation ////////////
Fermion src (FGrid); random(RNG4,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
2017-08-19 23:10:12 +01:00
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
const int num_cases = 4;
2020-05-08 23:54:50 +01:00
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
2017-08-19 23:10:12 +01:00
controls Cases [] = {
2020-05-08 23:54:50 +01:00
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential }
2017-08-19 23:10:12 +01:00
};
for(int c=0;c<num_cases;c++) {
2018-03-04 16:39:29 +00:00
2020-05-08 23:54:50 +01:00
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
2017-08-20 01:10:50 +01:00
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc StaggeredKernels" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
int nwarm = 10;
2017-08-19 23:10:12 +01:00
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
2020-05-08 23:54:50 +01:00
Ds.DhopEO(src_o,r_e,DaggerNo);
2017-08-19 23:10:12 +01:00
}
FGrid->Barrier();
double t1=usecond();
2020-05-08 23:54:50 +01:00
uint64_t ncall = 500;
2017-08-25 09:25:54 +01:00
2017-08-19 23:10:12 +01:00
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
2020-05-08 23:54:50 +01:00
Ds.DhopEO(src_o,r_e,DaggerNo);
2017-08-19 23:10:12 +01:00
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
2020-05-08 23:54:50 +01:00
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1146.0*volume)/2;
2017-08-19 23:10:12 +01:00
double mf_hi, mf_lo, mf_err;
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
2017-08-25 09:25:54 +01:00
mflops_all.push_back(mflops);
2017-08-19 23:10:12 +01:00
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
}
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
2017-08-19 23:10:12 +01:00
}
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2017-08-25 09:25:54 +01:00
return mflops_best;
2017-08-19 23:10:12 +01:00
}
};
2020-05-08 23:54:50 +01:00
2017-08-19 23:10:12 +01:00
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
2017-08-25 19:33:54 +01:00
#ifdef KNL
LebesgueOrder::Block = std::vector<int>({8,2,2,2});
#else
2017-08-19 23:10:12 +01:00
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
2017-08-25 19:33:54 +01:00
#endif
2017-08-19 23:10:12 +01:00
Benchmark::Decomposition();
2020-10-07 02:48:35 +01:00
int do_su4=1;
2017-08-19 23:10:12 +01:00
int do_memory=1;
int do_comms =1;
2020-10-07 02:48:35 +01:00
int sel=4;
std::vector<int> L_list({8,12,16,24,32});
2017-09-16 18:18:07 +01:00
int selm1=sel-1;
2017-08-25 09:25:54 +01:00
std::vector<double> wilson;
std::vector<double> dwf4;
2020-05-08 23:54:50 +01:00
std::vector<double> staggered;
2017-08-25 09:25:54 +01:00
2020-05-08 23:54:50 +01:00
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Wilson dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
wilson.push_back(Benchmark::DWF(Ls,L_list[l]));
2017-08-19 23:10:12 +01:00
}
2020-05-08 23:54:50 +01:00
Ls=12;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::DWF(Ls,L_list[l]) ;
dwf4.push_back(result);
2017-08-19 23:10:12 +01:00
}
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Improved Staggered dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::Staggered(L_list[l]) ;
staggered.push_back(result);
}
2017-08-27 13:46:02 +01:00
2017-08-25 09:25:54 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-10-14 03:18:51 +01:00
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered" <<std::endl;
2017-08-25 09:25:54 +01:00
for(int l=0;l<L_list.size();l++){
2020-10-07 02:48:35 +01:00
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
2017-08-25 09:25:54 +01:00
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int NN=NN_global;
2017-08-27 13:46:02 +01:00
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
2020-10-07 02:48:35 +01:00
if ( do_su4 ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
2020-10-07 02:48:35 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::SU4();
}
if ( do_comms ) {
2017-08-27 13:46:02 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2020-10-14 03:18:51 +01:00
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4\t\t Staggered " <<std::endl;
2020-05-08 23:54:50 +01:00
for(int l=0;l<L_list.size();l++){
2020-10-14 03:18:51 +01:00
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
2020-05-08 23:54:50 +01:00
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2017-08-25 09:25:54 +01:00
2020-05-08 23:54:50 +01:00
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
2017-08-25 09:25:54 +01:00
2017-08-19 23:10:12 +01:00
Grid_finalize();
}