1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00
Grid/HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc

876 lines
37 KiB
C++
Raw Normal View History

Imported changes from feature/gparity_HMC branch: Rework of WilsonFlow class Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const. smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 19:10:59 +01:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//Production binary for the 40ID G-parity ensemble
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EOFAparameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
OneFlavourRationalParams, rat_params,
double, action_tolerance,
double, action_mixcg_inner_tolerance,
double, md_tolerance,
double, md_mixcg_inner_tolerance);
EOFAparameters() {
action_mixcg_inner_tolerance = 1e-8;
action_tolerance = 1e-10;
md_tolerance = 1e-8;
md_mixcg_inner_tolerance = 1e-8;
rat_params.lo = 1.0;
rat_params.hi = 25.0;
rat_params.MaxIter = 10000;
rat_params.tolerance= 1.0e-9;
rat_params.degree = 14;
rat_params.precision= 50;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
RealD, TrajectoryLength,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
std::vector<EOFAparameters>, eofa_l,
RatQuoParameters, rat_quo_s,
RatQuoParameters, rat_quo_DSDR);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
TrajectoryLength = 1.0;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr, int action_or_md){
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
PowerMethod<FermionFieldD> power_method;
RealD lambda_max;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
lambda_max = power_method(MdagM,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
lambda_max = power_method(VdagV,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
if(action_or_md == 0 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
std::cout << "-------------------------------------------------------------------------------" << std::endl;
if(action_or_md == 1 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
}
template<typename FermionImplPolicy>
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
typename FermionImplPolicy::FermionField eta(FGrid);
RealD scale = std::sqrt(0.5);
gaussian(rng,eta); eta = eta * scale;
//Use the inbuilt check
EOFA.refresh(latt, eta);
EOFA.S(latt);
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
}
template<typename FermionImplPolicy>
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
};
template<typename FermionImplPolicy>
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
}
//Applications of M^{-1} cost the same as M for EOFA!
template<typename FermionImplPolicy>
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
};
template<typename FermionImplPolicy>
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
}
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
MPCG.InnerTolerance = InnerTolerance;
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
RealD Delta; //reliable update parameter
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
RealD delta,
Integer maxit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
Delta(delta),
MaxIterations(maxit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
#if 0
Imported changes from feature/gparity_HMC branch: Rework of WilsonFlow class Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const. smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 19:10:59 +01:00
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
{
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
}
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
typedef GparityMobiusEOFAFermionD EOFAactionD;
typedef GparityMobiusFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityMobiusEOFAFermionF EOFAactionF;
typedef GparityMobiusFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF,FermionImplPolicyD2> MixedPrecRHMC;
Imported changes from feature/gparity_HMC branch: Rework of WilsonFlow class Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const. smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 19:10:59 +01:00
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = user_params.Steps;
MD.trajL = user_params.TrajectoryLength;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
//aiming for ainv=2.068 me Bob
//Estimated a(ml+mres) [48ID] = 0.001048 0.00104
// a(mh+mres) [48ID] = 0.028847 0.02805
//Estimate Ls=12, b+c=2 mres~0.0003
const int Ls = 12;
Real beta = 1.946;
Real light_mass = 0.00074; //0.00104 - mres_approx;
Real strange_mass = 0.02775; //0.02805 - mres_approx
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD mobius_scale = 2.; //b+c
RealD mob_bmc = 1.0;
RealD mob_b = (mobius_scale + mob_bmc)/2.;
RealD mob_c = (mobius_scale - mob_bmc)/2.;
//Setup the Grids
auto UGridD = TheHMC.Resources.GetCartesian();
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(UGridD);
LatticeGaugeFieldF Uf(UGridF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
/////////////////////////////////////////////////////////////
// Light EOFA action
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
/////////////////////////////////////////////////////////////
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
int n_light_hsb = 5;
assert(user_params.eofa_l.size() == n_light_hsb);
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
for(int i=0;i<n_light_hsb;i++){
RealD iml = eofa_light_masses[i];
RealD ipv = eofa_pv_masses[i];
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
#if 1
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
#else
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
#endif
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
*LopD, *RopD,
*ActionMCG_L, *ActionMCG_R,
*ActionMCG_L, *ActionMCG_R,
*DerivMCG_L, *DerivMCG_R,
user_params.eofa_l[i].rat_params, true);
EOFA_pfactions[i] = EOFA;
Level1.push_back(EOFA);
}
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 10000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
///////////////////////////////////
// DSDR action
///////////////////////////////////
RealD dsdr_mass=-1.8;
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
RealD dsdr_epsilon_b = 0.5;
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
RationalActionParams rat_act_params_DSDR;
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_DSDR.precision= 60;
rat_act_params_DSDR.MaxIter = 10000;
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
Level2.push_back(&Quotient_DSDR);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool
tune_rhmc_s=false, eigenrange_s=false,
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
check_eofa=false,
upper_bound_eofa=false, lower_bound_eofa(false);
std::string lanc_params_s;
std::string lanc_params_DSDR;
int tune_rhmc_s_action_or_md;
int tune_rhmc_DSDR_action_or_md;
int eofa_which_hsb;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_s"){
assert(i < argc-1);
tune_rhmc_s=true;
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
else if(sarg == "--tune_rhmc_DSDR"){
assert(i < argc-1);
tune_rhmc_DSDR=true;
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_DSDR"){
assert(i < argc-1);
eigenrange_DSDR=true;
lanc_params_DSDR = argv[i+1];
}
else if(sarg == "--check_eofa"){
assert(i < argc-1);
check_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
}
else if(sarg == "--upper_bound_eofa"){
assert(i < argc-1);
upper_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
else if(sarg == "--lower_bound_eofa"){
assert(i < argc-1);
lower_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
}
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
std::cout << GridLogMessage << "Running checks" << std::endl;
TheHMC.initializeGaugeFieldAndRNGs(Ud);
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
if(check_eofa){
if(eofa_which_hsb >= 0){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
}else{
for(int i=0;i<n_light_hsb;i++){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
}
}
}
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
#endif
Imported changes from feature/gparity_HMC branch: Rework of WilsonFlow class Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const. smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 19:10:59 +01:00
} // main