1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/tensors/Tensor_Ta.h

125 lines
3.6 KiB
C
Raw Normal View History

2018-01-13 00:31:02 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_Ta.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
2018-01-13 00:31:02 +00:00
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_TA_H
#define GRID_MATH_TA_H
2015-06-17 12:41:07 +01:00
2018-01-13 00:31:02 +00:00
NAMESPACE_BEGIN(Grid);
2018-01-13 00:31:02 +00:00
///////////////////////////////////////////////
// Ta function for scalar, vector, matrix
///////////////////////////////////////////////
/*
2015-06-04 10:29:55 +01:00
inline ComplexF Ta( const ComplexF &arg){ return arg;}
inline ComplexD Ta( const ComplexD &arg){ return arg;}
inline RealF Ta( const RealF &arg){ return arg;}
inline RealD Ta( const RealD &arg){ return arg;}
2018-01-13 00:31:02 +00:00
*/
2018-01-13 00:31:02 +00:00
template<class vtype> inline iScalar<vtype> Ta(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = Ta(r._internal);
return ret;
}
template<class vtype,int N> inline iVector<vtype,N> Ta(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = Ta(r._internal[i]);
}
return ret;
}
template<class vtype,int N> inline iMatrix<vtype,N> Ta(const iMatrix<vtype,N> &arg)
{
iMatrix<vtype,N> ret;
double factor = (1.0/(double)N);
ret= (arg - adj(arg))*0.5;
ret=ret - (trace(ret)*factor);
return ret;
}
2018-01-13 00:31:02 +00:00
///////////////////////////////////////////////
// ProjectOnGroup function for scalar, vector, matrix
// Projects on orthogonal, unitary group
///////////////////////////////////////////////
2018-01-13 00:31:02 +00:00
template<class vtype> inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = ProjectOnGroup(r._internal);
return ret;
}
template<class vtype,int N> inline iVector<vtype,N> ProjectOnGroup(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = ProjectOnGroup(r._internal[i]);
}
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype nrm;
vtype inner;
for(int c1=0;c1<N;c1++){
zeroit(inner);
for(int c2=0;c2<N;c2++)
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = rsqrt(inner);
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
2018-01-13 00:31:02 +00:00
for (int b=c1+1; b<N; ++b){
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
zeroit(pr);
for(int c=0; c<N; ++c)
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];
2018-01-13 00:31:02 +00:00
for(int c=0; c<N; ++c){
ret._internal[b][c] -= pr * ret._internal[c1][c];
}
}
2018-01-13 00:31:02 +00:00
}
// assuming the determinant is ok
return ret;
}
2018-01-13 00:31:02 +00:00
NAMESPACE_END(Grid);
#endif