1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/lib/lattice/Lattice_base.h

479 lines
15 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_base.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
2018-01-15 00:03:49 +00:00
/* END LEGAL */
2018-01-24 13:35:13 +00:00
#pragma once
2015-05-11 19:09:49 +01:00
2015-05-21 06:47:05 +01:00
#define STREAMING_STORES
2018-01-15 00:03:49 +00:00
NAMESPACE_BEGIN(Grid);
2015-05-11 19:09:49 +01:00
extern int GridCshiftPermuteMap[4][16];
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
2018-01-26 22:27:47 +00:00
protected:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
2018-01-26 22:27:47 +00:00
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
2018-03-08 21:00:25 +00:00
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
#ifndef LATTICE_VIEW_STRICT
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
#endif
};
2015-05-11 19:09:49 +01:00
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_loops and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
2018-01-15 00:03:49 +00:00
public:
#ifdef LATTICE_VIEW_STRICT
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
#endif
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
{
}
2015-05-11 19:09:49 +01:00
};
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
2018-01-15 00:03:49 +00:00
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
2015-05-11 19:09:49 +01:00
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
2018-01-15 00:03:49 +00:00
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
2015-05-11 19:09:49 +01:00
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
/////////////////////////////////////////////////////////////////////////////////////////
2015-05-11 19:09:49 +01:00
template<class vobj>
class Lattice : public LatticeAccelerator<vobj>
2015-05-11 19:09:49 +01:00
{
public:
GridBase *Grid(void) const { return this->_grid; }
///////////////////////////////////////////////////
// Member types
///////////////////////////////////////////////////
2018-01-15 00:03:49 +00:00
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef vobj vector_object;
2018-01-24 13:35:13 +00:00
private:
void dealloc(void)
{
alignedAllocator<vobj> alloc;
if( this->_odata_size ) {
alloc.deallocate(this->_odata,this->_odata_size);
this->_odata=nullptr;
this->_odata_size=0;
}
}
2018-01-24 13:35:13 +00:00
void resize(uint64_t size)
{
alignedAllocator<vobj> alloc;
if ( this->_odata_size != size ) {
dealloc();
}
this->_odata_size = size;
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
#if 0
void copy_vec(vobj *ptr,uint64_t count)
{
dealloc();
this->_odata = ptr;
assert(this->_odata_size == count);
}
#endif
public:
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (void) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
}
}
2015-05-11 19:09:49 +01:00
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
2015-05-11 19:09:49 +01:00
{
2015-05-25 13:45:08 +01:00
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
2015-05-25 13:45:08 +01:00
auto me = View();
2015-05-21 06:47:05 +01:00
#ifdef STREAMING_STORES
accelerator_loop(ss,me,{
2015-05-21 06:47:05 +01:00
vobj tmp = eval(ss,expr);
vstream(me[ss] ,tmp);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#else
accelerator_loop(ss,me,{
me[ss]=eval(ss,expr);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#endif
2015-05-11 19:09:49 +01:00
return *this;
}
2018-01-24 13:35:13 +00:00
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
2015-05-11 19:09:49 +01:00
{
2015-05-25 13:45:08 +01:00
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
2015-05-25 13:45:08 +01:00
auto me = View();
2015-05-21 06:47:05 +01:00
#ifdef STREAMING_STORES
accelerator_loop(ss,me,{
2015-05-21 06:47:05 +01:00
vobj tmp = eval(ss,expr);
vstream(me[ss] ,tmp);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#else
accelerator_loop(ss,me,{
me[ss]=eval(ss,expr);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#endif
2015-05-11 19:09:49 +01:00
return *this;
}
2018-01-24 13:35:13 +00:00
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
2015-05-11 19:09:49 +01:00
{
2015-05-25 13:45:08 +01:00
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto me = View();
2015-05-21 06:47:05 +01:00
#ifdef STREAMING_STORES
accelerator_loop(ss,me,{
vobj tmp = eval(ss,expr);
vstream(me[ss] ,tmp);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#else
accelerator_loop(ss,me,{
me[ss] = eval(ss,expr);
2018-01-24 13:35:13 +00:00
});
2015-05-21 06:47:05 +01:00
#endif
2015-05-11 19:09:49 +01:00
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
2018-01-15 00:03:49 +00:00
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
2015-05-25 13:45:08 +01:00
resize(this->_grid->oSites());
2018-02-02 11:27:35 +00:00
*this = expr;
2018-01-24 13:35:13 +00:00
}
2015-05-11 19:09:49 +01:00
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
2018-02-02 11:27:35 +00:00
resize(this->_grid->oSites());
2018-02-02 11:27:35 +00:00
*this = expr;
2018-01-24 13:35:13 +00:00
}
2015-05-11 19:09:49 +01:00
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
2015-05-25 13:45:08 +01:00
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
2015-05-25 13:45:08 +01:00
resize(this->_grid->oSites());
2015-05-11 19:09:49 +01:00
2018-02-02 11:27:35 +00:00
*this = expr;
}
2015-05-11 19:09:49 +01:00
2018-01-24 13:35:13 +00:00
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View();
accelerator_loop(ss,me,{
me[ss]=r;
2018-01-24 13:35:13 +00:00
});
return *this;
}
//////////////////////////////////////////////////////////////////
// Follow rule of five, with Constructor requires "grid" passed
// to user defined constructor
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
}
///////////////////////////////////////////
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
// std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl;
this->_grid = r.Grid();
resize(this->_grid->oSites());
2018-02-02 11:27:35 +00:00
*this = r;
}
///////////////////////////////////////////
// move constructor
///////////////////////////////////////////
Lattice(Lattice && r){
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
2018-01-26 23:06:03 +00:00
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
}
///////////////////////////////////////////
// assignment template
///////////////////////////////////////////
2018-01-24 13:35:13 +00:00
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = View();
auto him= r.View();
accelerator_loop(ss,me,{
me[ss]=him[ss];
});
return *this;
}
///////////////////////////////////////////
// Copy assignment
///////////////////////////////////////////
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
2018-01-26 23:06:03 +00:00
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = View();
auto him= r.View();
accelerator_loop(ss,me,{
me[ss]=him[ss];
2018-01-24 13:35:13 +00:00
});
return *this;
}
///////////////////////////////////////////
// Move assignment possible if same type
///////////////////////////////////////////
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
resize(0); // deletes if appropriate
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
2018-01-26 23:06:03 +00:00
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
return *this;
}
/////////////////////////////////////////////////////////////////////////////
// *=,+=,-= operators inherit behvour from correspond */+/- operation
/////////////////////////////////////////////////////////////////////////////
2018-01-24 13:35:13 +00:00
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
2018-01-24 13:35:13 +00:00
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
2018-01-24 13:35:13 +00:00
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
2018-01-27 23:50:17 +00:00
friend inline void swap(Lattice &l, Lattice &r) {
conformable(l,r);
LatticeAccelerator<vobj> tmp;
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
tmp = *lp; *lp=*rp; *rp=tmp;
}
}; // class Lattice
2018-01-15 00:03:49 +00:00
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
2018-01-27 00:04:12 +00:00
for(int g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
2018-01-27 00:04:12 +00:00
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
2018-01-15 00:03:49 +00:00
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
2015-05-13 09:24:10 +01:00
}
2018-01-15 00:03:49 +00:00
stream<<"]\t";
stream<<ss<<std::endl;
2015-05-13 09:24:10 +01:00
}
2018-01-15 00:03:49 +00:00
return stream;
2015-05-11 19:09:49 +01:00
}
2018-01-15 00:03:49 +00:00
NAMESPACE_END(Grid);
2015-05-11 19:09:49 +01:00