1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h

201 lines
6.3 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(_NumOp.FermionRedBlackGrid()),
PhiOdd(_NumOp.FermionRedBlackGrid())
{
conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid());
conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid());
conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid());
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=zero;
ActionSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
// Even det factors
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU=force;
// phi^dag dV (Mdag M)^-1 V^dag phi
Vpc.MpcDeriv(force , PhiOdd, X ); dSdU=dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
Mpc.MpcDeriv(force,Y,X); dSdU=dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU=dSdU-force;
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
//dSdU = -Ta(dSdU);
2016-04-06 09:58:43 +01:00
dSdU = -dSdU;
};
};
}
}
#endif