1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/tests/Test_gfield_shift.cc

184 lines
5.8 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_gfield_shift.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//Test the shifting of the gauge field that respects the boundary conditions
#include <Grid/Grid.h>
using namespace Grid;
;
typedef ConjugateGimplR Gimpl; //can choose periodic / charge conjugate directions at wil
typedef Gimpl::GaugeField GaugeField;
typedef Gimpl::GaugeLinkField GaugeLinkField;
typedef Gimpl::SiteGaugeField SiteGaugeField;
typedef Gimpl::SiteGaugeLink SiteGaugeLink;
GaugeField CshiftGaugeField(const GaugeField &U, const int dir, const int shift){
GridBase *Grid = U.Grid();
GaugeField out(Grid);
GaugeLinkField Umu(Grid);
for(int mu=0;mu<Grid->Nd();mu++){
Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = Gimpl::CshiftLink(Umu,dir,shift);
PokeIndex<LorentzIndex>(out,Umu,mu);
}
return out;
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
std::vector<int> conj_dirs = {1,1,0,0};
Gimpl::setDirections(conj_dirs);
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
GaugeField U(&Fine);
GaugeField ShiftU(&Fine);
GaugeLinkField link_field(&Fine), link_field_2(&Fine);
//Like Test_cshift we put the lex coordinate index on each site but make it imaginary
//so we can tell when it was complex conjugated
LatticeComplex lex(&Fine);
lex=Zero();
U = Zero();
{
LatticeComplex coor(&Fine);
Integer stride =1;
for(int d=0;d<4;d++){
LatticeCoordinate(coor,d);
lex = lex + coor*stride;
stride=stride*latt_size[d];
}
PokeIndex<ColourIndex>(link_field, lex, 0,0); //place on 0,0 element of link
for(int mu=0;mu<Nd;mu++){
link_field_2 = link_field + mu*stride; //add in lex-mapping of mu
link_field_2 = ComplexD(0,1) * link_field_2; //make imaginary
PokeIndex<LorentzIndex>(U, link_field_2, mu);
}
}
std::stringstream ss;
ss<<"error";
for(int d=0;d<Fine._ndimension;d++){
ss<<"."<<Fine._processor_coor[d];
}
ss<<"_wr_"<<Fine._processor;
std::string fname(ss.str());
std::ofstream ferr(fname);
Integer vol4d = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
bool fail = false;
typename SiteGaugeField::scalar_object um;
TComplex cm;
for(int dir=0;dir<4;dir++){
for(int shift=-latt_size[dir]+1;shift<latt_size[dir];shift++){
if ( Fine.IsBoss() )
std::cout<<GridLogMessage<<"Shifting by "<<shift<<" in direction "<<dir
<< " dir is conj ? " << conj_dirs[dir] << std::endl;
ShiftU = CshiftGaugeField(U,dir,shift);
Coordinate coor(4);
for(coor[3]=0;coor[3]<latt_size[3];coor[3]++){
for(coor[2]=0;coor[2]<latt_size[2];coor[2]++){
for(coor[1]=0;coor[1]<latt_size[1];coor[1]++){
for(coor[0]=0;coor[0]<latt_size[0];coor[0]++){
peekSite(um,ShiftU,coor);
Coordinate scoor(coor);
scoor[dir] = (scoor[dir]+shift + latt_size[dir])%latt_size[dir];
Integer slex = scoor[0]
+ latt_size[0]*scoor[1]
+ latt_size[0]*latt_size[1]*scoor[2]
+ latt_size[0]*latt_size[1]*latt_size[2]*scoor[3];
for(int mu = 0 ; mu < 4; mu++){
Integer slex_mu = slex + vol4d*mu;
Complex scm(0,slex_mu); //imaginary
if(
( shift > 0 && coor[dir] >= latt_size[dir]-shift && conj_dirs[dir] )
||
( shift < 0 && coor[dir] <= -shift-1 && conj_dirs[dir] )
)
scm = conjugate(scm); //CC if pulled over boundary
cm = um(mu)()(0,0);
RealD nrm = abs(scm-cm()()());
//std::cout << cm << " " << scm << std::endl;
Coordinate peer(4);
Complex tmp =cm;
Integer index=real(tmp);
Integer cm_mu = index / vol4d;
index = index % vol4d;
Lexicographic::CoorFromIndex(peer,index,latt_size);
if (nrm > 0){
ferr<<"FAIL mu " << mu << " shift "<< shift<<" in dir "<< dir<<" ["<<coor[0]<<","<<coor[1]<<","<<coor[2]<<","<<coor[3]<<"] = "<< cm()()()<<" expect "<<scm<<" "<<nrm<<std::endl;
ferr<<"Got mu "<< cm_mu << " site " <<index<<" : " << peer[0]<<","<<peer[1]<<","<<peer[2]<<","<<peer[3]<<std::endl;
index=real(scm);
Integer scm_mu = index / vol4d;
index = index % vol4d;
Lexicographic::CoorFromIndex(peer,index,latt_size);
ferr<<"Expect mu " << scm_mu << " site " <<index<<": " << peer[0]<<","<<peer[1]<<","<<peer[2]<<","<<peer[3]<<std::endl;
fail = true;
}
}
}}}}
}
}
if(fail) std::cout << "Test FAILED : see " << fname << " for more details" << std::endl;
else std::cout << "Test Passed" << std::endl;
Grid_finalize();
}