1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/Hadrons/Modules/MContraction/Baryon.hpp

247 lines
10 KiB
C++
Raw Normal View History

2016-12-15 18:26:39 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
2018-09-01 21:30:30 +01:00
Source file: Hadrons/Modules/MContraction/Baryon.hpp
2016-12-15 18:26:39 +00:00
2019-02-05 18:55:24 +00:00
Copyright (C) 2015-2019
2016-12-15 18:26:39 +00:00
Author: Antonin Portelli <antonin.portelli@me.com>
2019-07-15 15:26:30 +01:00
Author: Felix Erben <felix.erben@ed.ac.uk>
2016-12-15 18:26:39 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_Baryon_hpp_
#define Hadrons_MContraction_Baryon_hpp_
2016-12-05 08:26:57 +00:00
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
2016-12-05 08:26:57 +00:00
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Baryon *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class BaryonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TBaryon: public Module<BaryonPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
2016-12-05 08:26:57 +00:00
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
2019-07-15 15:26:30 +01:00
std::vector<Complex>, corr);
2016-12-05 08:26:57 +00:00
};
public:
// constructor
TBaryon(const std::string name);
// destructor
virtual ~TBaryon(void) {};
2016-12-05 08:26:57 +00:00
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
2016-12-05 08:26:57 +00:00
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Baryon, ARG(TBaryon<FIMPL, FIMPL, FIMPL>), MContraction);
2016-12-05 08:26:57 +00:00
/******************************************************************************
* TBaryon implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
TBaryon<FImpl1, FImpl2, FImpl3>::TBaryon(const std::string name)
: Module<BaryonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().q3};
return input;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
2016-12-05 08:26:57 +00:00
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
2019-07-15 15:26:30 +01:00
envTmpLat(LatticeComplex, "diquark");
}
2016-12-05 08:26:57 +00:00
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
{
2019-07-15 15:26:30 +01:00
LOG(Message) << "Computing nucleon contractions '" << getName() << "' using"
2016-12-05 08:26:57 +00:00
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q2);
envGetTmp(LatticeComplex, c);
2019-07-15 15:26:30 +01:00
envGetTmp(LatticeComplex, diquark);
Result result;
2019-07-15 15:26:30 +01:00
int nt = env().getDim(Tp);
result.corr.resize(nt);
std::vector<TComplex> buf;
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
Gamma GammaA(Gamma::Algebra::Identity); //Still hardcoded 1
Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
char left[] = "uud";
char right[] = "uud";
std::vector<int> wick_contraction = {0,0,0,0,0,0};
for (int ie=0; ie < 6 ; ie++)
if (left[0] == right[epsilon[ie][0]] && left[1] == right[epsilon[ie][1]] && left[2] == right[epsilon[ie][2]])
wick_contraction[ie]=1;
int parity = 1;
for (int ie_src=0; ie_src < 6 ; ie_src++){
int a_src = epsilon[ie_src][0]; //a
int b_src = epsilon[ie_src][1]; //b
int c_src = epsilon[ie_src][2]; //c
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
int a_snk = epsilon[ie_snk][0]; //a'
int b_snk = epsilon[ie_snk][1]; //b'
int c_snk = epsilon[ie_snk][2]; //c'
auto Daa = peekColour(q2,a_snk,a_src); //D_{alpha' alpha}
auto Dbb = peekColour(q3,b_snk,b_src); //D_{beta' beta}
auto Dcc = peekColour(q1,c_snk,c_src); //D_{gamma' gamma}
auto Dab = peekColour(q2,a_snk,b_src); //D_{alpha' beta}
auto Dac = peekColour(q2,a_snk,c_src); //D_{alpha' gamma}
auto Dba = peekColour(q3,b_snk,a_src); //D_{beta' alpha}
auto Dbc = peekColour(q3,b_snk,c_src); //D_{beta' gamma}
auto Dca = peekColour(q1,c_snk,a_src); //D_{gamma' alpha}
auto Dcb = peekColour(q1,c_snk,b_src); //D_{gamma' beta}
// This needs lees peekColours for some baryons, but does not compile - worth the effort?
/*if (wick_contraction[0] || wick_contraction[4])
auto Daa = peekColour(q2,a_snk,a_src); //D_{alpha' alpha}
if (wick_contraction[0] || wick_contraction[5])
auto Dbb = peekColour(q3,b_snk,b_src); //D_{beta' beta}
if (wick_contraction[0] || wick_contraction[3])
auto Dcc = peekColour(q1,c_snk,c_src); //D_{gamma' gamma}
if (wick_contraction[1] || wick_contraction[3])
auto Dab = peekColour(q2,a_snk,b_src); //D_{alpha' beta}
if (wick_contraction[2] || wick_contraction[5])
auto Dac = peekColour(q2,a_snk,c_src); //D_{alpha' gamma}
if (wick_contraction[2] || wick_contraction[3])
auto Dba = peekColour(q3,b_snk,a_src); //D_{beta' alpha}
if (wick_contraction[1] || wick_contraction[4])
auto Dbc = peekColour(q3,b_snk,c_src); //D_{beta' gamma}
if (wick_contraction[1] || wick_contraction[5])
auto Dca = peekColour(q1,c_snk,a_src); //D_{gamma' alpha}
if (wick_contraction[2] || wick_contraction[4])
auto Dcb = peekColour(q1,c_snk,b_src); //D_{gamma' beta}*/
// This is the \delta_{123}^{123} part
if (wick_contraction[0]){
diquark = trace(GammaB * Daa * GammaB * Dbb); //1st GammaB and Daa transposed????
auto temp = GammaA * Dcc * diquark;
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{231} part
if (wick_contraction[1]){
auto temp = GammaA * Dca * GammaB * Dab * GammaB * Dbc; //Dab transposed???
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{312} part
if (wick_contraction[2]){
auto temp = GammaA * Dcb * GammaB * Dba * GammaB * Dac; //both GammaB and Dba transposed???
auto g4_temp = GammaA * g4 * temp;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{132} part
if (wick_contraction[3]){
diquark = trace(GammaB * Dba * GammaB * Dab); //2nd GammaB and Dab transposed????
auto temp = GammaA * Dcc * diquark;
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{321} part
if (wick_contraction[4]){
auto temp = GammaA * Dcb * GammaB * Daa * GammaB * Dbc; //1st GammaB and Daa transposed???
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
// This is the \delta_{123}^{213} part
if (wick_contraction[5]){
auto temp = GammaA * Dca * GammaB * Dbb * GammaB * Dac; //(Dbb*GammaB) transposed???
auto g4_temp = GammaA * g4 * temp;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp);
}
}
}
sliceSum(c,buf,Tp);
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
saveResult(par().output, "baryon", result);
2016-12-05 08:26:57 +00:00
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_Baryon_hpp_