1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00
Grid/tests/qdpxx/Test_qdpxx_wilson.cc

510 lines
14 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/qdpxx/Test_qdpxx_wilson.cc
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
// Mass
2017-10-23 18:27:34 +01:00
double mq = 0.0;
// Define Wilson Types
typedef Grid::QCD::WilsonImplR::FermionField FermionField;
typedef Grid::QCD::LatticeGaugeField GaugeField;
#include <chroma.h>
#include <actions/ferm/invert/syssolver_linop_cg_array.h>
#include <actions/ferm/invert/syssolver_linop_aggregate.h>
enum ChromaAction
{
Wilson, // Wilson
WilsonClover // CloverFermions
};
void make_gauge(GaugeField &lat, FermionField &src);
void calc_grid(ChromaAction CA, GaugeField &lat, FermionField &src, FermionField &res, int dag);
void calc_chroma(ChromaAction CA, GaugeField &lat, FermionField &src, FermionField &res, int dag);
namespace Chroma
{
class ChromaWrapper
{
public:
typedef multi1d<LatticeColorMatrix> U;
typedef LatticeFermion T4;
static void ImportGauge(GaugeField &gr,
QDP::multi1d<QDP::LatticeColorMatrix> &ch)
{
Grid::QCD::LorentzColourMatrix LCM;
Grid::Complex cc;
QDP::ColorMatrix cm;
QDP::Complex c;
std::vector<int> x(4);
QDP::multi1d<int> cx(4);
std::vector<int> gd = gr._grid->GlobalDimensions();
for (x[0] = 0; x[0] < gd[0]; x[0]++)
{
for (x[1] = 0; x[1] < gd[1]; x[1]++)
{
for (x[2] = 0; x[2] < gd[2]; x[2]++)
{
for (x[3] = 0; x[3] < gd[3]; x[3]++)
{
cx[0] = x[0];
cx[1] = x[1];
cx[2] = x[2];
cx[3] = x[3];
Grid::peekSite(LCM, gr, x);
for (int mu = 0; mu < 4; mu++)
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
cc = LCM(mu)()(i, j);
c = QDP::cmplx(QDP::Real(real(cc)), QDP::Real(imag(cc)));
QDP::pokeColor(cm, c, i, j);
}
}
QDP::pokeSite(ch[mu], cm, cx);
}
}
}
}
}
}
static void ExportGauge(GaugeField &gr,
QDP::multi1d<QDP::LatticeColorMatrix> &ch)
{
Grid::QCD::LorentzColourMatrix LCM;
Grid::Complex cc;
QDP::ColorMatrix cm;
QDP::Complex c;
std::vector<int> x(4);
QDP::multi1d<int> cx(4);
std::vector<int> gd = gr._grid->GlobalDimensions();
for (x[0] = 0; x[0] < gd[0]; x[0]++)
{
for (x[1] = 0; x[1] < gd[1]; x[1]++)
{
for (x[2] = 0; x[2] < gd[2]; x[2]++)
{
for (x[3] = 0; x[3] < gd[3]; x[3]++)
{
cx[0] = x[0];
cx[1] = x[1];
cx[2] = x[2];
cx[3] = x[3];
for (int mu = 0; mu < 4; mu++)
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
cm = QDP::peekSite(ch[mu], cx);
c = QDP::peekColor(cm, i, j);
cc = Grid::Complex(toDouble(real(c)), toDouble(imag(c)));
LCM(mu)
()(i, j) = cc;
}
}
}
Grid::pokeSite(LCM, gr, x);
}
}
}
}
}
// Specific for Wilson Fermions
static void ImportFermion(Grid::QCD::LatticeFermion &gr,
QDP::LatticeFermion &ch)
{
Grid::QCD::SpinColourVector F;
Grid::Complex c;
QDP::Fermion cF;
QDP::SpinVector cS;
QDP::Complex cc;
std::vector<int> x(4); // explicit 4d fermions in Grid
QDP::multi1d<int> cx(4);
std::vector<int> gd = gr._grid->GlobalDimensions();
for (x[0] = 0; x[0] < gd[0]; x[0]++)
{
for (x[1] = 0; x[1] < gd[1]; x[1]++)
{
for (x[2] = 0; x[2] < gd[2]; x[2]++)
{
for (x[3] = 0; x[3] < gd[3]; x[3]++)
{
cx[0] = x[0];
cx[1] = x[1];
cx[2] = x[2];
cx[3] = x[3];
Grid::peekSite(F, gr, x);
for (int j = 0; j < 3; j++)
{
for (int sp = 0; sp < 4; sp++)
{
c = F()(sp)(j);
cc = QDP::cmplx(QDP::Real(real(c)), QDP::Real(imag(c)));
QDP::pokeSpin(cS, cc, sp);
}
QDP::pokeColor(cF, cS, j);
}
QDP::pokeSite(ch, cF, cx);
}
}
}
}
}
// Specific for 4d Wilson fermions
static void ExportFermion(Grid::QCD::LatticeFermion &gr,
QDP::LatticeFermion &ch)
{
Grid::QCD::SpinColourVector F;
Grid::Complex c;
QDP::Fermion cF;
QDP::SpinVector cS;
QDP::Complex cc;
std::vector<int> x(4); // 4d fermions
QDP::multi1d<int> cx(4);
std::vector<int> gd = gr._grid->GlobalDimensions();
for (x[0] = 0; x[0] < gd[0]; x[0]++)
{
for (x[1] = 0; x[1] < gd[1]; x[1]++)
{
for (x[2] = 0; x[2] < gd[2]; x[2]++)
{
for (x[3] = 0; x[3] < gd[3]; x[3]++)
{
cx[0] = x[0];
cx[1] = x[1];
cx[2] = x[2];
cx[3] = x[3];
cF = QDP::peekSite(ch, cx);
for (int sp = 0; sp < 4; sp++)
{
for (int j = 0; j < 3; j++)
{
cS = QDP::peekColor(cF, j);
cc = QDP::peekSpin(cS, sp);
c = Grid::Complex(QDP::toDouble(QDP::real(cc)),
QDP::toDouble(QDP::imag(cc)));
F()
(sp)(j) = c;
}
}
Grid::pokeSite(F, gr, x);
}
}
}
}
}
static Handle<Chroma::UnprecLinearOperator<T4, U, U>> GetLinOp(U &u, ChromaAction params)
{
QDP::Real _mq(mq);
QDP::multi1d<int> bcs(QDP::Nd);
// Boundary conditions
bcs[0] = bcs[1] = bcs[2] = bcs[3] = 1;
if (params == Wilson)
{
Chroma::WilsonFermActParams p;
p.Mass = _mq;
Chroma::Handle<Chroma::FermBC<T4, U, U>> fbc(new Chroma::SimpleFermBC<T4, U, U>(bcs));
Chroma::Handle<Chroma::CreateFermState<T4, U, U>> cfs(new Chroma::CreateSimpleFermState<T4, U, U>(fbc));
Chroma::UnprecWilsonFermAct S_f(cfs, p);
Chroma::Handle<Chroma::FermState<T4, U, U>> ffs(S_f.createState(u));
return S_f.linOp(ffs);
}
if (params == WilsonClover)
{
Chroma::CloverFermActParams p;
p.Mass = _mq;
p.clovCoeffR = QDP::Real(1.0);
p.clovCoeffT = QDP::Real(1.0);
2017-10-23 18:27:34 +01:00
Real u0 = QDP::Real(1.0);
Chroma::Handle<Chroma::FermBC<T4, U, U>> fbc(new Chroma::SimpleFermBC<T4, U, U>(bcs));
Chroma::Handle<Chroma::CreateFermState<T4, U, U>> cfs(new Chroma::CreateSimpleFermState<T4, U, U>(fbc));
Chroma::UnprecCloverFermAct S_f(cfs, p);
Chroma::Handle<Chroma::FermState<T4, U, U>> ffs(S_f.createState(u));
return S_f.linOp(ffs);
}
}
};
} // namespace Chroma
int main(int argc, char **argv)
{
/********************************************************
* Setup QDP
*********************************************************/
Chroma::initialize(&argc, &argv);
Chroma::WilsonTypeFermActs4DEnv::registerAll();
/********************************************************
* Setup Grid
*********************************************************/
Grid::Grid_init(&argc, &argv);
Grid::GridCartesian *UGrid = Grid::QCD::SpaceTimeGrid::makeFourDimGrid(Grid::GridDefaultLatt(),
Grid::GridDefaultSimd(Grid::QCD::Nd, Grid::vComplex::Nsimd()),
Grid::GridDefaultMpi());
std::vector<int> gd = UGrid->GlobalDimensions();
QDP::multi1d<int> nrow(QDP::Nd);
for (int mu = 0; mu < 4; mu++)
nrow[mu] = gd[mu];
QDP::Layout::setLattSize(nrow);
QDP::Layout::create();
GaugeField Ug(UGrid);
FermionField src(UGrid);
FermionField res_chroma(UGrid);
FermionField res_grid(UGrid);
2017-10-23 18:27:34 +01:00
FermionField only_wilson(UGrid);
FermionField difference(UGrid);
std::vector<ChromaAction> ActionList({Wilson, WilsonClover});
std::vector<std::string> ActionName({"Wilson", "WilsonClover"});
{
for (int i = 0; i < ActionList.size(); i++)
{
std::cout << "*****************************" << std::endl;
std::cout << "Action " << ActionName[i] << std::endl;
std::cout << "*****************************" << std::endl;
make_gauge(Ug, src); // fills the gauge field and the fermion field with random numbers
for (int dag = 0; dag < 2; dag++)
{
{
std::cout << "Dag = " << dag << std::endl;
calc_chroma(ActionList[i], Ug, src, res_chroma, dag);
// Remove the normalisation of Chroma Gauge links ????????
std::cout << "Norm of Chroma " << ActionName[i] << " multiply " << Grid::norm2(res_chroma) << std::endl;
calc_grid(ActionList[i], Ug, src, res_grid, dag);
std::cout << "Norm of gauge " << Grid::norm2(Ug) << std::endl;
std::cout << "Norm of Grid " << ActionName[i] << " multiply " << Grid::norm2(res_grid) << std::endl;
2017-10-23 18:27:34 +01:00
difference = res_chroma - res_grid;
std::cout << "Norm of difference " << Grid::norm2(difference) << std::endl;
2017-10-23 18:47:00 +01:00
2017-10-23 18:27:34 +01:00
// Isolate Clover term
2017-10-23 18:47:00 +01:00
calc_grid(Wilson, Ug, src, only_wilson, dag); // Wilson term
2017-10-23 18:27:34 +01:00
res_grid -= only_wilson;
res_chroma -= only_wilson;
2017-10-23 18:47:00 +01:00
2017-10-23 18:27:34 +01:00
std::cout << "Chroma:" << res_chroma << std::endl;
std::cout << "Grid :" << res_grid << std::endl;
2017-10-23 18:47:00 +01:00
difference = (res_grid-res_chroma);
std::cout << "Difference :" << difference << std::endl;
}
}
std::cout << "Finished test " << std::endl;
Chroma::finalize();
}
}
}
void calc_chroma(ChromaAction action, GaugeField &lat, FermionField &src, FermionField &res, int dag)
{
QDP::multi1d<QDP::LatticeColorMatrix> u(4);
Chroma::ChromaWrapper::ImportGauge(lat, u);
QDP::LatticeFermion check;
QDP::LatticeFermion result;
QDP::LatticeFermion psi;
Chroma::ChromaWrapper::ImportFermion(src, psi);
for (int mu = 0; mu < 4; mu++)
{
std::cout << "Imported Gauge norm [" << mu << "] " << QDP::norm2(u[mu]) << std::endl;
}
std::cout << "Imported Fermion norm " << QDP::norm2(psi) << std::endl;
typedef QDP::LatticeFermion T;
typedef QDP::multi1d<QDP::LatticeColorMatrix> U;
auto linop = Chroma::ChromaWrapper::GetLinOp(u, action);
printf("Calling Chroma Linop\n");
fflush(stdout);
if (dag)
(*linop)(check, psi, Chroma::MINUS);
else
(*linop)(check, psi, Chroma::PLUS);
printf("Called Chroma Linop\n");
fflush(stdout);
// std::cout << "Calling Chroma Linop " << std::endl;
// linop->evenEvenLinOp(tmp, psi, isign);
// check[rb[0]] = tmp;
// linop->oddOddLinOp(tmp, psi, isign);
// check[rb[1]] = tmp;
// linop->evenOddLinOp(tmp, psi, isign);
// check[rb[0]] += tmp;
// linop->oddEvenLinOp(tmp, psi, isign);
// check[rb[1]] += tmp;
Chroma::ChromaWrapper::ExportFermion(res, check);
}
void make_gauge(GaugeField &Umu, FermionField &src)
{
using namespace Grid;
using namespace Grid::QCD;
std::vector<int> seeds4({1, 2, 3, 4});
Grid::GridCartesian *UGrid = (Grid::GridCartesian *)Umu._grid;
Grid::GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
Grid::QCD::SU3::HotConfiguration(RNG4, Umu);
2017-10-23 18:47:00 +01:00
2017-10-23 18:27:34 +01:00
// Fermion field
//Grid::gaussian(RNG4, src);
Grid::QCD::SpinColourVector F;
Grid::Complex c;
2017-10-23 18:47:00 +01:00
2017-10-23 18:27:34 +01:00
std::vector<int> x(4); // 4d fermions
std::vector<int> gd = src._grid->GlobalDimensions();
for (x[0] = 0; x[0] < gd[0]; x[0]++)
{
for (x[1] = 0; x[1] < gd[1]; x[1]++)
{
for (x[2] = 0; x[2] < gd[2]; x[2]++)
{
for (x[3] = 0; x[3] < gd[3]; x[3]++)
{
2017-10-23 18:47:00 +01:00
for (int sp = 0; sp < 4; sp++)
2017-10-23 18:27:34 +01:00
{
2017-10-23 18:47:00 +01:00
for (int j = 0; j < 3; j++) // colours
2017-10-23 18:27:34 +01:00
{
2017-10-23 18:47:00 +01:00
F()(sp)(j) = Grid::Complex(0.0,0.0);
if (((sp == 0)|| (sp==3)) && (j==0))
{
c = Grid::Complex(1.0, 0.0);
F()(sp)(j) = c;
}
2017-10-23 18:27:34 +01:00
}
}
Grid::pokeSite(F, src, x);
2017-10-23 18:47:00 +01:00
2017-10-23 18:27:34 +01:00
}
}
}
}
}
void calc_grid(ChromaAction action, Grid::QCD::LatticeGaugeField &Umu, Grid::QCD::LatticeFermion &src, Grid::QCD::LatticeFermion &res, int dag)
{
using namespace Grid;
using namespace Grid::QCD;
Grid::GridCartesian *UGrid = (Grid::GridCartesian *)Umu._grid;
Grid::GridRedBlackCartesian *UrbGrid = Grid::QCD::SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
Grid::RealD _mass = mq;
if (action == Wilson)
{
Grid::QCD::WilsonFermionR Wf(Umu, *UGrid, *UrbGrid, _mass);
std::cout << Grid::GridLogMessage << " Calling Grid Wilson Fermion multiply " << std::endl;
if (dag)
Wf.Mdag(src, res);
else
Wf.M(src, res);
return;
}
if (action == WilsonClover)
{
Grid::RealD _csw = 1.0;
Grid::QCD::WilsonCloverFermionR Wf(Umu, *UGrid, *UrbGrid, _mass, _csw);
Wf.ImportGauge(Umu);
std::cout << Grid::GridLogMessage << " Calling Grid Wilson Clover Fermion multiply " << std::endl;
if (dag)
Wf.Mdag(src, res);
else
Wf.M(src, res);
return;
}
assert(0);
}