mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
711 lines
24 KiB
C
711 lines
24 KiB
C
|
/* -*- Mode: C; comment-column: 22; fill-column: 79; compile-command: "gcc -o zolotarev zolotarev.c -ansi -pedantic -lm -DTEST"; -*- */
|
||
|
#define VERSION Source Time-stamp: <19-OCT-2004 09:33:22.00 adk@MISSCONTRARY>
|
||
|
|
||
|
/* These C routines evalute the optimal rational approximation to the signum
|
||
|
* function for epsilon < |x| < 1 using Zolotarev's theorem.
|
||
|
*
|
||
|
* To obtain reliable results for high degree approximations (large n) it is
|
||
|
* necessary to compute using sufficiently high precision arithmetic. To this
|
||
|
* end the code has been parameterised to work with the preprocessor names
|
||
|
* INTERNAL_PRECISION and PRECISION set to float, double, or long double as
|
||
|
* appropriate. INTERNAL_PRECISION is used in computing the Zolotarev
|
||
|
* coefficients, which are converted to PRECISION before being returned to the
|
||
|
* caller. Presumably even higher precision could be obtained using GMP or
|
||
|
* similar package, but bear in mind that rounding errors might also be
|
||
|
* significant in evaluating the resulting polynomial. The convergence criteria
|
||
|
* have been written in a precision-independent form. */
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||
|
|
||
|
#ifndef INTERNAL_PRECISION
|
||
|
#define INTERNAL_PRECISION double
|
||
|
#endif
|
||
|
|
||
|
#include "zolotarev.h"
|
||
|
#define ZOLOTAREV_INTERNAL
|
||
|
#undef ZOLOTAREV_DATA
|
||
|
#define ZOLOTAREV_DATA izd
|
||
|
#undef ZPRECISION
|
||
|
#define ZPRECISION INTERNAL_PRECISION
|
||
|
#include "zolotarev.h"
|
||
|
#undef ZOLOTAREV_INTERNAL
|
||
|
|
||
|
/* The ANSI standard appears not to know what pi is */
|
||
|
|
||
|
#ifndef M_PI
|
||
|
#define M_PI ((INTERNAL_PRECISION) 3.141592653589793238462643383279502884197\
|
||
|
169399375105820974944592307816406286208998628034825342117068)
|
||
|
#endif
|
||
|
|
||
|
#define ZERO ((INTERNAL_PRECISION) 0)
|
||
|
#define ONE ((INTERNAL_PRECISION) 1)
|
||
|
#define TWO ((INTERNAL_PRECISION) 2)
|
||
|
#define THREE ((INTERNAL_PRECISION) 3)
|
||
|
#define FOUR ((INTERNAL_PRECISION) 4)
|
||
|
#define HALF (ONE/TWO)
|
||
|
|
||
|
/* The following obscenity seems to be the simplest (?) way to coerce the C
|
||
|
* preprocessor to convert the value of a preprocessor token into a string. */
|
||
|
|
||
|
#define PP2(x) #x
|
||
|
#define PP1(a,b,c) a ## b(c)
|
||
|
#define STRINGIFY(name) PP1(PP,2,name)
|
||
|
|
||
|
/* Compute the partial fraction expansion coefficients (alpha) from the
|
||
|
* factored form */
|
||
|
|
||
|
static void construct_partfrac(izd *z) {
|
||
|
int dn = z -> dn, dd = z -> dd, type = z -> type;
|
||
|
int j, k, da = dd + 1 + type;
|
||
|
INTERNAL_PRECISION A = z -> A, *a = z -> a, *ap = z -> ap, *alpha;
|
||
|
alpha = (INTERNAL_PRECISION*) malloc(da * sizeof(INTERNAL_PRECISION));
|
||
|
for (j = 0; j < dd; j++)
|
||
|
for (k = 0, alpha[j] = A; k < dd; k++)
|
||
|
alpha[j] *=
|
||
|
(k < dn ? ap[j] - a[k] : ONE) / (k == j ? ONE : ap[j] - ap[k]);
|
||
|
if(type == 1) /* implicit pole at zero? */
|
||
|
for (k = 0, alpha[dd] = A * (dn > dd ? - a[dd] : ONE); k < dd; k++) {
|
||
|
alpha[dd] *= a[k] / ap[k];
|
||
|
alpha[k] *= (dn > dd ? ap[k] - a[dd] : ONE) / ap[k];
|
||
|
}
|
||
|
alpha[da-1] = dn == da - 1 ? A : ZERO;
|
||
|
z -> alpha = alpha;
|
||
|
z -> da = da;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Convert factored polynomial into dense polynomial. The input is the overall
|
||
|
* factor A and the roots a[i], such that p = A product(x - a[i], i = 1..d) */
|
||
|
|
||
|
static INTERNAL_PRECISION *poly_factored_to_dense(INTERNAL_PRECISION A,
|
||
|
INTERNAL_PRECISION *a,
|
||
|
int d) {
|
||
|
INTERNAL_PRECISION *p;
|
||
|
int i, j;
|
||
|
p = (INTERNAL_PRECISION *) malloc((d + 2) * sizeof(INTERNAL_PRECISION));
|
||
|
p[0] = A;
|
||
|
for (i = 0; i < d; i++) {
|
||
|
p[i+1] = p[i];
|
||
|
for (j = i; j > 0; j--) p[j] = p[j-1] - a[i]*p[j];
|
||
|
p[0] *= - a[i];
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/* Convert a rational function of the form R0(x) = x p(x^2)/q(x^2) (type 0) or
|
||
|
* R1(x) = p(x^2)/[x q(x^2)] (type 1) into its continued fraction
|
||
|
* representation. We assume that 0 <= deg(q) - deg(p) <= 1 for type 0 and 0 <=
|
||
|
* deg(p) - deg(q) <= 1 for type 1. On input p and q are in factored form, and
|
||
|
* deg(q) = dq, deg(p) = dp. The output is the continued fraction coefficients
|
||
|
* beta, where R(x) = beta[0] x + 1/(beta[1] x + 1/(...)).
|
||
|
*
|
||
|
* The method used is as follows. There are four cases to consider:
|
||
|
*
|
||
|
* 0.i. Type 0, deg p = deg q
|
||
|
*
|
||
|
* 0.ii. Type 0, deg p = deg q - 1
|
||
|
*
|
||
|
* 1.i. Type 1, deg p = deg q
|
||
|
*
|
||
|
* 1.ii. Type 1, deg p = deg q + 1
|
||
|
*
|
||
|
* and these are connected by two transformations:
|
||
|
*
|
||
|
* A. To obtain a continued fraction expansion of type 1 we use a single-step
|
||
|
* polynomial division we find beta and r(x) such that p(x) = beta x q(x) +
|
||
|
* r(x), with deg(r) = deg(q). This implies that p(x^2) = beta x^2 q(x^2) +
|
||
|
* r(x^2), and thus R1(x) = x beta + r(x^2)/(x q(x^2)) = x beta + 1/R0(x)
|
||
|
* with R0(x) = x q(x^2)/r(x^2).
|
||
|
*
|
||
|
* B. A continued fraction expansion of type 0 is obtained in a similar, but
|
||
|
* not identical, manner. We use the polynomial division algorithm to compute
|
||
|
* the quotient beta and the remainder r that satisfy p(x) = beta q(x) + r(x)
|
||
|
* with deg(r) = deg(q) - 1. We thus have x p(x^2) = x beta q(x^2) + x r(x^2),
|
||
|
* so R0(x) = x beta + x r(x^2)/q(x^2) = x beta + 1/R1(x) with R1(x) = q(x^2) /
|
||
|
* (x r(x^2)).
|
||
|
*
|
||
|
* Note that the deg(r) must be exactly deg(q) for (A) and deg(q) - 1 for (B)
|
||
|
* because p and q have disjoint roots all of multiplicity 1. This means that
|
||
|
* the division algorithm requires only a single polynomial subtraction step.
|
||
|
*
|
||
|
* The transformations between the cases form the following finite state
|
||
|
* automaton:
|
||
|
*
|
||
|
* +------+ +------+ +------+ +------+
|
||
|
* | | | | ---(A)---> | | | |
|
||
|
* | 0.ii | ---(B)---> | 1.ii | | 0.i | <---(A)--- | 1.i |
|
||
|
* | | | | <---(B)--- | | | |
|
||
|
* +------+ +------+ +------+ +------+
|
||
|
*/
|
||
|
|
||
|
static INTERNAL_PRECISION *contfrac_A(INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *, int, int);
|
||
|
|
||
|
static INTERNAL_PRECISION *contfrac_B(INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *,
|
||
|
INTERNAL_PRECISION *, int, int);
|
||
|
|
||
|
static void construct_contfrac(izd *z){
|
||
|
INTERNAL_PRECISION *r, A = z -> A, *p = z -> a, *q = z -> ap;
|
||
|
int dp = z -> dn, dq = z -> dd, type = z -> type;
|
||
|
|
||
|
z -> db = 2 * dq + 1 + type;
|
||
|
z -> beta = (INTERNAL_PRECISION *)
|
||
|
malloc(z -> db * sizeof(INTERNAL_PRECISION));
|
||
|
p = poly_factored_to_dense(A, p, dp);
|
||
|
q = poly_factored_to_dense(ONE, q, dq);
|
||
|
r = (INTERNAL_PRECISION *) malloc((MAX(dp,dq) + 1) *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
if (type == 0) (void) contfrac_B(z -> beta, p, q, r, dp, dq);
|
||
|
else (void) contfrac_A(z -> beta, p, q, r, dp, dq);
|
||
|
free(p); free(q); free(r);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static INTERNAL_PRECISION *contfrac_A(INTERNAL_PRECISION *beta,
|
||
|
INTERNAL_PRECISION *p,
|
||
|
INTERNAL_PRECISION *q,
|
||
|
INTERNAL_PRECISION *r, int dp, int dq) {
|
||
|
INTERNAL_PRECISION quot, *rb;
|
||
|
int j;
|
||
|
|
||
|
/* p(x) = x beta q(x) + r(x); dp = dq or dp = dq + 1 */
|
||
|
|
||
|
quot = dp == dq ? ZERO : p[dp] / q[dq];
|
||
|
r[0] = p[0];
|
||
|
for (j = 1; j <= dp; j++) r[j] = p[j] - quot * q[j-1];
|
||
|
#ifdef DEBUG
|
||
|
printf("%s: Continued Fraction form: deg p = %2d, deg q = %2d, beta = %g\n",
|
||
|
__FUNCTION__, dp, dq, (float) quot);
|
||
|
for (j = 0; j <= dq + 1; j++)
|
||
|
printf("\tp[%2d] = %14.6g\tq[%2d] = %14.6g\tr[%2d] = %14.6g\n",
|
||
|
j, (float) (j > dp ? ZERO : p[j]),
|
||
|
j, (float) (j == 0 ? ZERO : q[j-1]),
|
||
|
j, (float) (j == dp ? ZERO : r[j]));
|
||
|
#endif /* DEBUG */
|
||
|
*(rb = contfrac_B(beta, q, r, p, dq, dq)) = quot;
|
||
|
return rb + 1;
|
||
|
}
|
||
|
|
||
|
static INTERNAL_PRECISION *contfrac_B(INTERNAL_PRECISION *beta,
|
||
|
INTERNAL_PRECISION *p,
|
||
|
INTERNAL_PRECISION *q,
|
||
|
INTERNAL_PRECISION *r, int dp, int dq) {
|
||
|
INTERNAL_PRECISION quot, *rb;
|
||
|
int j;
|
||
|
|
||
|
/* p(x) = beta q(x) + r(x); dp = dq or dp = dq - 1 */
|
||
|
|
||
|
quot = dp == dq ? p[dp] / q[dq] : ZERO;
|
||
|
for (j = 0; j < dq; j++) r[j] = p[j] - quot * q[j];
|
||
|
#ifdef DEBUG
|
||
|
printf("%s: Continued Fraction form: deg p = %2d, deg q = %2d, beta = %g\n",
|
||
|
__FUNCTION__, dp, dq, (float) quot);
|
||
|
for (j = 0; j <= dq; j++)
|
||
|
printf("\tp[%2d] = %14.6g\tq[%2d] = %14.6g\tr[%2d] = %14.6g\n",
|
||
|
j, (float) (j > dp ? ZERO : p[j]),
|
||
|
j, (float) q[j],
|
||
|
j, (float) (j == dq ? ZERO : r[j]));
|
||
|
#endif /* DEBUG */
|
||
|
*(rb = dq > 0 ? contfrac_A(beta, q, r, p, dq, dq-1) : beta) = quot;
|
||
|
return rb + 1;
|
||
|
}
|
||
|
|
||
|
/* The global variable U is used to hold the argument u throughout the AGM
|
||
|
* recursion. The global variables F and K are set in the innermost
|
||
|
* instantiation of the recursive function AGM to the values of the elliptic
|
||
|
* integrals F(u,k) and K(k) respectively. They must be made thread local to
|
||
|
* make this code thread-safe in a multithreaded environment. */
|
||
|
|
||
|
static INTERNAL_PRECISION U, F, K; /* THREAD LOCAL */
|
||
|
|
||
|
/* Recursive implementation of Gauss' arithmetico-geometric mean, which is the
|
||
|
* kernel of the method used to compute the Jacobian elliptic functions
|
||
|
* sn(u,k), cn(u,k), and dn(u,k) with parameter k (where 0 < k < 1), as well
|
||
|
* as the elliptic integral F(s,k) satisfying F(sn(u,k)) = u and the complete
|
||
|
* elliptic integral K(k).
|
||
|
*
|
||
|
* The algorithm used is a recursive implementation of the Gauss (Landen)
|
||
|
* transformation.
|
||
|
*
|
||
|
* The function returns the value of sn(u,k'), where k' is the dual parameter,
|
||
|
* and also sets the values of the global variables F and K. The latter is
|
||
|
* used to determine the sign of cn(u,k').
|
||
|
*
|
||
|
* The algorithm is deemed to have converged when b ceases to increase. This
|
||
|
* works whatever INTERNAL_PRECISION is specified. */
|
||
|
|
||
|
static INTERNAL_PRECISION AGM(INTERNAL_PRECISION a,
|
||
|
INTERNAL_PRECISION b,
|
||
|
INTERNAL_PRECISION s) {
|
||
|
static INTERNAL_PRECISION pb = -ONE;
|
||
|
INTERNAL_PRECISION c, d, xi;
|
||
|
|
||
|
if (b <= pb) {
|
||
|
pb = -ONE;
|
||
|
F = asin(s) / a; /* Here, a is the AGM */
|
||
|
K = M_PI / (TWO * a);
|
||
|
return sin(U * a);
|
||
|
}
|
||
|
pb = b;
|
||
|
c = a - b;
|
||
|
d = a + b;
|
||
|
xi = AGM(HALF*d, sqrt(a*b), ONE + c*c == ONE ?
|
||
|
HALF*s*d/a : (a - sqrt(a*a - s*s*c*d))/(c*s));
|
||
|
return 2*a*xi / (d + c*xi*xi);
|
||
|
}
|
||
|
|
||
|
/* Computes sn(u,k), cn(u,k), dn(u,k), F(u,k), and K(k). It is essentially a
|
||
|
* wrapper for the routine AGM. The sign of cn(u,k) is defined to be -1 if
|
||
|
* K(k) < u < 3*K(k) and +1 otherwise, and thus sign is computed by some quite
|
||
|
* unnecessarily obfuscated bit manipulations. */
|
||
|
|
||
|
static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||
|
INTERNAL_PRECISION* sn, INTERNAL_PRECISION* cn,
|
||
|
INTERNAL_PRECISION* dn, INTERNAL_PRECISION* elF,
|
||
|
INTERNAL_PRECISION* elK) {
|
||
|
int sgn;
|
||
|
U = u;
|
||
|
*sn = AGM(ONE, sqrt(ONE - k*k), u);
|
||
|
sgn = ((int) (fabs(u) / K)) % 4; /* sgn = 0, 1, 2, 3 */
|
||
|
sgn ^= sgn >> 1; /* (sgn & 1) = 0, 1, 1, 0 */
|
||
|
sgn = 1 - ((sgn & 1) << 1); /* sgn = 1, -1, -1, 1 */
|
||
|
*cn = ((INTERNAL_PRECISION) sgn) * sqrt(ONE - *sn * *sn);
|
||
|
*dn = sqrt(ONE - k*k* *sn * *sn);
|
||
|
*elF = F;
|
||
|
*elK = K;
|
||
|
}
|
||
|
|
||
|
/* Compute the coefficients for the optimal rational approximation R(x) to
|
||
|
* sgn(x) of degree n over the interval epsilon < |x| < 1 using Zolotarev's
|
||
|
* formula.
|
||
|
*
|
||
|
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||
|
* type = 1 for the approximation which is infinite at x = 0. */
|
||
|
|
||
|
zolotarev_data* bfm_zolotarev(PRECISION epsilon, int n, int type) {
|
||
|
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||
|
l, invlambda, xi, xisq, *tv, s, opl;
|
||
|
int m, czero, ts;
|
||
|
zolotarev_data *zd;
|
||
|
izd *d = (izd*) malloc(sizeof(izd));
|
||
|
|
||
|
d -> type = type;
|
||
|
d -> epsilon = (INTERNAL_PRECISION) epsilon;
|
||
|
d -> n = n;
|
||
|
d -> dd = n / 2;
|
||
|
d -> dn = d -> dd - 1 + n % 2; /* n even: dn = dd - 1, n odd: dn = dd */
|
||
|
d -> deg_denom = 2 * d -> dd;
|
||
|
d -> deg_num = 2 * d -> dn + 1;
|
||
|
|
||
|
d -> a = (INTERNAL_PRECISION*) malloc((1 + d -> dn) *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
d -> ap = (INTERNAL_PRECISION*) malloc(d -> dd *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
ksq = d -> epsilon * d -> epsilon;
|
||
|
kp = sqrt(ONE - ksq);
|
||
|
sncndnFK(ZERO, kp, &sn, &cn, &dn, &F, &Kp); /* compute Kp = K(kp) */
|
||
|
z0 = TWO * Kp / (INTERNAL_PRECISION) n;
|
||
|
M = ONE;
|
||
|
A = ONE / d -> epsilon;
|
||
|
|
||
|
sncndnFK(HALF * z0, kp, &sn, &cn, &dn, &F, &Kj); /* compute xi */
|
||
|
xi = ONE / dn;
|
||
|
xisq = xi * xi;
|
||
|
invlambda = xi;
|
||
|
|
||
|
for (m = 0; m < d -> dd; m++) {
|
||
|
czero = 2 * (m + 1) == n; /* n even and m = dd -1 */
|
||
|
|
||
|
z = z0 * ((INTERNAL_PRECISION) m + ONE);
|
||
|
sncndnFK(z, kp, &sn, &cn, &dn, &F, &Kj);
|
||
|
t = cn / sn;
|
||
|
c = - t*t;
|
||
|
if (!czero) (d -> a)[d -> dn - 1 - m] = ksq / c;
|
||
|
|
||
|
z = z0 * ((INTERNAL_PRECISION) m + HALF);
|
||
|
sncndnFK(z, kp, &sn, &cn, &dn, &F, &Kj);
|
||
|
t = cn / sn;
|
||
|
cp = - t*t;
|
||
|
(d -> ap)[d -> dd - 1 - m] = ksq / cp;
|
||
|
|
||
|
M *= (ONE - c) / (ONE - cp);
|
||
|
A *= (czero ? -ksq : c) * (ONE - cp) / (cp * (ONE - c));
|
||
|
invlambda *= (ONE - c*xisq) / (ONE - cp*xisq);
|
||
|
}
|
||
|
invlambda /= M;
|
||
|
d -> A = TWO / (ONE + invlambda) * A;
|
||
|
d -> Delta = (invlambda - ONE) / (invlambda + ONE);
|
||
|
|
||
|
d -> gamma = (INTERNAL_PRECISION*) malloc((1 + d -> n) *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
l = ONE / invlambda;
|
||
|
opl = ONE + l;
|
||
|
sncndnFK(sqrt( d -> type == 1
|
||
|
? (THREE + l) / (FOUR * opl)
|
||
|
: (ONE + THREE*l) / (opl*opl*opl)
|
||
|
), sqrt(ONE - l*l), &sn, &cn, &dn, &F, &Kj);
|
||
|
s = M * F;
|
||
|
for (m = 0; m < d -> n; m++) {
|
||
|
sncndnFK(s + TWO*Kp*m/n, kp, &sn, &cn, &dn, &F, &Kj);
|
||
|
d -> gamma[m] = d -> epsilon / dn;
|
||
|
}
|
||
|
|
||
|
/* If R(x) is a Zolotarev rational approximation of degree (n,m) with maximum
|
||
|
* error Delta, then (1 - Delta^2) / R(x) is also an optimal Chebyshev
|
||
|
* approximation of degree (m,n) */
|
||
|
|
||
|
if (d -> type == 1) {
|
||
|
d -> A = (ONE - d -> Delta * d -> Delta) / d -> A;
|
||
|
tv = d -> a; d -> a = d -> ap; d -> ap = tv;
|
||
|
ts = d -> dn; d -> dn = d -> dd; d -> dd = ts;
|
||
|
ts = d -> deg_num; d -> deg_num = d -> deg_denom; d -> deg_denom = ts;
|
||
|
}
|
||
|
|
||
|
construct_partfrac(d);
|
||
|
construct_contfrac(d);
|
||
|
|
||
|
/* Converting everything to PRECISION for external use only */
|
||
|
|
||
|
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||
|
zd -> A = (PRECISION) d -> A;
|
||
|
zd -> Delta = (PRECISION) d -> Delta;
|
||
|
zd -> epsilon = (PRECISION) d -> epsilon;
|
||
|
zd -> n = d -> n;
|
||
|
zd -> type = d -> type;
|
||
|
zd -> dn = d -> dn;
|
||
|
zd -> dd = d -> dd;
|
||
|
zd -> da = d -> da;
|
||
|
zd -> db = d -> db;
|
||
|
zd -> deg_num = d -> deg_num;
|
||
|
zd -> deg_denom = d -> deg_denom;
|
||
|
|
||
|
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||
|
free(d -> a);
|
||
|
|
||
|
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||
|
free(d -> ap);
|
||
|
|
||
|
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||
|
free(d -> alpha);
|
||
|
|
||
|
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||
|
free(d -> beta);
|
||
|
|
||
|
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||
|
free(d -> gamma);
|
||
|
|
||
|
free(d);
|
||
|
return zd;
|
||
|
}
|
||
|
|
||
|
zolotarev_data* bfm_higham(PRECISION epsilon, int n) {
|
||
|
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||
|
int m, czero;
|
||
|
zolotarev_data *zd;
|
||
|
izd *d = (izd*) malloc(sizeof(izd));
|
||
|
|
||
|
d -> type = 0;
|
||
|
d -> epsilon = (INTERNAL_PRECISION) epsilon;
|
||
|
d -> n = n;
|
||
|
d -> dd = n / 2;
|
||
|
d -> dn = d -> dd - 1 + n % 2; /* n even: dn = dd - 1, n odd: dn = dd */
|
||
|
d -> deg_denom = 2 * d -> dd;
|
||
|
d -> deg_num = 2 * d -> dn + 1;
|
||
|
|
||
|
d -> a = (INTERNAL_PRECISION*) malloc((1 + d -> dn) *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
d -> ap = (INTERNAL_PRECISION*) malloc(d -> dd *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
A = (INTERNAL_PRECISION) n;
|
||
|
z0 = M_PI / A;
|
||
|
A = n % 2 == 0 ? A : ONE / A;
|
||
|
M = d -> epsilon * A;
|
||
|
epssq = d -> epsilon * d -> epsilon;
|
||
|
|
||
|
for (m = 0; m < d -> dd; m++) {
|
||
|
czero = 2 * (m + 1) == n; /* n even and m = dd - 1*/
|
||
|
|
||
|
if (!czero) {
|
||
|
z = z0 * ((INTERNAL_PRECISION) m + ONE);
|
||
|
t = tan(z);
|
||
|
c = - t*t;
|
||
|
(d -> a)[d -> dn - 1 - m] = c;
|
||
|
M *= epssq - c;
|
||
|
}
|
||
|
|
||
|
z = z0 * ((INTERNAL_PRECISION) m + HALF);
|
||
|
t = tan(z);
|
||
|
cp = - t*t;
|
||
|
(d -> ap)[d -> dd - 1 - m] = cp;
|
||
|
M /= epssq - cp;
|
||
|
}
|
||
|
|
||
|
d -> gamma = (INTERNAL_PRECISION*) malloc((1 + d -> n) *
|
||
|
sizeof(INTERNAL_PRECISION));
|
||
|
for (m = 0; m < d -> n; m++) d -> gamma[m] = ONE;
|
||
|
|
||
|
d -> A = A;
|
||
|
d -> Delta = ONE - M;
|
||
|
|
||
|
construct_partfrac(d);
|
||
|
construct_contfrac(d);
|
||
|
|
||
|
/* Converting everything to PRECISION for external use only */
|
||
|
|
||
|
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||
|
zd -> A = (PRECISION) d -> A;
|
||
|
zd -> Delta = (PRECISION) d -> Delta;
|
||
|
zd -> epsilon = (PRECISION) d -> epsilon;
|
||
|
zd -> n = d -> n;
|
||
|
zd -> type = d -> type;
|
||
|
zd -> dn = d -> dn;
|
||
|
zd -> dd = d -> dd;
|
||
|
zd -> da = d -> da;
|
||
|
zd -> db = d -> db;
|
||
|
zd -> deg_num = d -> deg_num;
|
||
|
zd -> deg_denom = d -> deg_denom;
|
||
|
|
||
|
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||
|
free(d -> a);
|
||
|
|
||
|
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||
|
free(d -> ap);
|
||
|
|
||
|
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||
|
free(d -> alpha);
|
||
|
|
||
|
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||
|
free(d -> beta);
|
||
|
|
||
|
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||
|
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||
|
free(d -> gamma);
|
||
|
|
||
|
free(d);
|
||
|
return zd;
|
||
|
}
|
||
|
|
||
|
#ifdef TEST
|
||
|
|
||
|
#undef ZERO
|
||
|
#define ZERO ((PRECISION) 0)
|
||
|
#undef ONE
|
||
|
#define ONE ((PRECISION) 1)
|
||
|
#undef TWO
|
||
|
#define TWO ((PRECISION) 2)
|
||
|
|
||
|
/* Evaluate the rational approximation R(x) using the factored form */
|
||
|
|
||
|
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||
|
int m;
|
||
|
PRECISION R;
|
||
|
|
||
|
if (rdata -> type == 0) {
|
||
|
R = rdata -> A * x;
|
||
|
for (m = 0; m < rdata -> deg_denom/2; m++)
|
||
|
R *= (2*(m+1) > rdata -> deg_num ? ONE : x*x - rdata -> a[m]) /
|
||
|
(x*x - rdata -> ap[m]);
|
||
|
} else {
|
||
|
R = rdata -> A / x;
|
||
|
for (m = 0; m < rdata -> deg_num/2; m++)
|
||
|
R *= (x*x - rdata -> a[m]) /
|
||
|
(2*(m+1) > rdata -> deg_denom ? ONE : x*x - rdata -> ap[m]);
|
||
|
}
|
||
|
return R;
|
||
|
}
|
||
|
|
||
|
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||
|
|
||
|
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||
|
int m;
|
||
|
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||
|
for (m = 0; m < rdata -> dd; m++)
|
||
|
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||
|
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||
|
return R * x;
|
||
|
}
|
||
|
|
||
|
/* Evaluate the rational approximation R(x) using continued fraction form.
|
||
|
*
|
||
|
* If x = 0 and type = 1 then the result should be INF, whereas if x = 0 and
|
||
|
* type = 0 then the result should be 0, but division by zero will occur at
|
||
|
* intermediate stages of the evaluation. For IEEE implementations with
|
||
|
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||
|
* but with signalling overflow you will get an error message. */
|
||
|
|
||
|
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||
|
int m;
|
||
|
PRECISION R = rdata -> beta[0] * x;
|
||
|
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||
|
return R;
|
||
|
}
|
||
|
|
||
|
/* Evaluate the rational approximation R(x) using Cayley form */
|
||
|
|
||
|
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||
|
int m;
|
||
|
PRECISION T;
|
||
|
|
||
|
T = rdata -> type == 0 ? ONE : -ONE;
|
||
|
for (m = 0; m < rdata -> n; m++)
|
||
|
T *= (rdata -> gamma[m] - x) / (rdata -> gamma[m] + x);
|
||
|
return (ONE - T) / (ONE + T);
|
||
|
}
|
||
|
|
||
|
/* Test program. Apart from printing out the parameters for R(x) it produces
|
||
|
* the following data files for plotting (unless NPLOT is defined):
|
||
|
*
|
||
|
* zolotarev-fn is a plot of R(x) for |x| < 1.2. This should look like sgn(x).
|
||
|
*
|
||
|
* zolotarev-err is a plot of the error |R(x) - sgn(x)| scaled by 1/Delta. This
|
||
|
* should oscillate deg_num + deg_denom + 2 times between +1 and -1 over the
|
||
|
* domain epsilon <= |x| <= 1.
|
||
|
*
|
||
|
* If ALLPLOTS is defined then zolotarev-partfrac (zolotarev-contfrac) is a
|
||
|
* plot of the difference between the values of R(x) computed using the
|
||
|
* factored form and the partial fraction (continued fraction) form, scaled by
|
||
|
* 1/Delta. It should be zero everywhere. */
|
||
|
|
||
|
int main(int argc, char** argv) {
|
||
|
|
||
|
int m, n, plotpts = 5000, type = 0;
|
||
|
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||
|
zolotarev_data *rdata;
|
||
|
PRECISION y;
|
||
|
FILE *plot_function, *plot_error,
|
||
|
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||
|
|
||
|
if (argc < 3 || argc > 4) {
|
||
|
fprintf(stderr, "Usage: %s epsilon n [type]\n", *argv);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
sscanf(argv[1], "%g", &eps); /* First argument is epsilon */
|
||
|
sscanf(argv[2], "%d", &n); /* Second argument is n */
|
||
|
if (argc == 4) sscanf(argv[3], "%d", &type); /* Third argument is type */
|
||
|
|
||
|
if (type < 0 || type > 2) {
|
||
|
fprintf(stderr, "%s: type must be 0 (Zolotarev R(0) = 0),\n"
|
||
|
"\t\t1 (Zolotarev R(0) = Inf, or 2 (Higham)\n", *argv);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
rdata = type == 2
|
||
|
? higham((PRECISION) eps, n)
|
||
|
: zolotarev((PRECISION) eps, n, type);
|
||
|
|
||
|
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||
|
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||
|
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||
|
"\tPRECISION = " STRINGIFY(PRECISION)
|
||
|
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||
|
"\tDelta = %g (maximum error)\n\n"
|
||
|
"\tA = %g (overall factor)\n",
|
||
|
(float) rdata -> epsilon, rdata -> n, type,
|
||
|
rdata -> deg_num, rdata -> deg_denom,
|
||
|
rdata -> type == 1 ? "infinite" : "zero",
|
||
|
(float) rdata -> Delta, (float) rdata -> A);
|
||
|
for (m = 0; m < MIN(rdata -> dd, rdata -> dn); m++)
|
||
|
printf("\ta[%2d] = %14.8g\t\ta'[%2d] = %14.8g\n",
|
||
|
m + 1, (float) rdata -> a[m], m + 1, (float) rdata -> ap[m]);
|
||
|
if (rdata -> dd > rdata -> dn)
|
||
|
printf("\t\t\t\t\ta'[%2d] = %14.8g\n",
|
||
|
rdata -> dn + 1, (float) rdata -> ap[rdata -> dn]);
|
||
|
if (rdata -> dd < rdata -> dn)
|
||
|
printf("\ta[%2d] = %14.8g\n",
|
||
|
rdata -> dd + 1, (float) rdata -> a[rdata -> dd]);
|
||
|
|
||
|
printf("\n\tPartial fraction coefficients\n");
|
||
|
printf("\talpha[ 0] = %14.8g\n",
|
||
|
(float) rdata -> alpha[rdata -> da - 1]);
|
||
|
for (m = 0; m < rdata -> dd; m++)
|
||
|
printf("\talpha[%2d] = %14.8g\ta'[%2d] = %14.8g\n",
|
||
|
m + 1, (float) rdata -> alpha[m], m + 1, (float) rdata -> ap[m]);
|
||
|
if (rdata -> type == 1)
|
||
|
printf("\talpha[%2d] = %14.8g\ta'[%2d] = %14.8g\n",
|
||
|
rdata -> dd + 1, (float) rdata -> alpha[rdata -> dd],
|
||
|
rdata -> dd + 1, (float) ZERO);
|
||
|
|
||
|
printf("\n\tContinued fraction coefficients\n");
|
||
|
for (m = 0; m < rdata -> db; m++)
|
||
|
printf("\tbeta[%2d] = %14.8g\n", m, (float) rdata -> beta[m]);
|
||
|
|
||
|
printf("\n\tCayley transform coefficients\n");
|
||
|
for (m = 0; m < rdata -> n; m++)
|
||
|
printf("\tgamma[%2d] = %14.8g\n", m, (float) rdata -> gamma[m]);
|
||
|
|
||
|
#ifndef NPLOT
|
||
|
plot_function = fopen("zolotarev-fn.dat", "w");
|
||
|
plot_error = fopen("zolotarev-err.dat", "w");
|
||
|
#ifdef ALLPLOTS
|
||
|
plot_partfrac = fopen("zolotarev-partfrac.dat", "w");
|
||
|
plot_contfrac = fopen("zolotarev-contfrac.dat", "w");
|
||
|
plot_cayley = fopen("zolotarev-cayley.dat", "w");
|
||
|
#endif /* ALLPLOTS */
|
||
|
for (m = 0, maxypferr = maxycferr = maxycaylerr = 0.0; m <= plotpts; m++) {
|
||
|
x = 2.4 * (float) m / plotpts - 1.2;
|
||
|
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||
|
/* skip x = 0 for type 1, as R(0) is singular */
|
||
|
y = zolotarev_eval((PRECISION) x, rdata);
|
||
|
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||
|
fprintf(plot_error, "%g %g\n",
|
||
|
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||
|
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||
|
/ rdata -> Delta);
|
||
|
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||
|
/ rdata -> Delta);
|
||
|
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||
|
/ rdata -> Delta);
|
||
|
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||
|
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||
|
maxycferr = MAX(maxycferr, fabs(ycferr));
|
||
|
maxycaylerr = MAX(maxycaylerr, fabs(ycaylerr));
|
||
|
}
|
||
|
#ifdef ALLPLOTS
|
||
|
fprintf(plot_partfrac, "%g %g\n", x, ypferr);
|
||
|
fprintf(plot_contfrac, "%g %g\n", x, ycferr);
|
||
|
fprintf(plot_cayley, "%g %g\n", x, ycaylerr);
|
||
|
#endif /* ALLPLOTS */
|
||
|
}
|
||
|
}
|
||
|
#ifdef ALLPLOTS
|
||
|
fclose(plot_cayley);
|
||
|
fclose(plot_contfrac);
|
||
|
fclose(plot_partfrac);
|
||
|
#endif /* ALLPLOTS */
|
||
|
fclose(plot_error);
|
||
|
fclose(plot_function);
|
||
|
|
||
|
printf("\n\tMaximum PF error = %g (relative to Delta)\n", maxypferr);
|
||
|
printf("\tMaximum CF error = %g (relative to Delta)\n", maxycferr);
|
||
|
printf("\tMaximum Cayley error = %g (relative to Delta)\n", maxycaylerr);
|
||
|
#endif /* NPLOT */
|
||
|
|
||
|
free(rdata -> a);
|
||
|
free(rdata -> ap);
|
||
|
free(rdata -> alpha);
|
||
|
free(rdata -> beta);
|
||
|
free(rdata -> gamma);
|
||
|
free(rdata);
|
||
|
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|
||
|
#endif /* TEST */
|