2017-04-09 15:42:10 +01:00
|
|
|
/*************************************************************************************
|
|
|
|
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
|
|
|
|
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
|
|
|
|
|
|
|
|
Copyright (C) 2017
|
|
|
|
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
|
|
directory
|
|
|
|
*************************************************************************************/
|
|
|
|
/* END LEGAL */
|
|
|
|
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
|
|
|
|
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
|
|
|
|
|
|
|
|
|
|
|
|
namespace Grid {
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// Block conjugate gradient. Dimension zero should be the block direction
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <class Field>
|
|
|
|
class BlockConjugateGradient : public OperatorFunction<Field> {
|
|
|
|
public:
|
|
|
|
|
|
|
|
typedef typename Field::scalar_type scomplex;
|
|
|
|
|
|
|
|
const int blockDim = 0;
|
|
|
|
|
|
|
|
int Nblock;
|
|
|
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
|
|
|
// Defaults true.
|
|
|
|
RealD Tolerance;
|
|
|
|
Integer MaxIterations;
|
|
|
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
|
|
|
|
|
|
|
BlockConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
|
|
: Tolerance(tol),
|
|
|
|
MaxIterations(maxit),
|
|
|
|
ErrorOnNoConverge(err_on_no_conv){};
|
|
|
|
|
|
|
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
|
|
|
{
|
|
|
|
int Orthog = 0; // First dimension is block dim
|
|
|
|
Nblock = Src._grid->_fdimensions[Orthog];
|
|
|
|
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<std::endl;
|
|
|
|
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Nblock "<<Nblock<<std::endl;
|
|
|
|
|
|
|
|
Psi.checkerboard = Src.checkerboard;
|
|
|
|
conformable(Psi, Src);
|
|
|
|
|
|
|
|
Field P(Src);
|
|
|
|
Field AP(Src);
|
|
|
|
Field R(Src);
|
|
|
|
|
2017-04-10 12:38:20 +01:00
|
|
|
GridStopWatch LinalgTimer;
|
|
|
|
GridStopWatch MatrixTimer;
|
|
|
|
GridStopWatch SolverTimer;
|
|
|
|
|
2017-04-09 15:42:10 +01:00
|
|
|
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
|
|
|
|
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
|
|
|
|
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
|
|
|
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
|
|
|
|
|
|
|
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
|
|
|
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
std::vector<RealD> residuals(Nblock);
|
|
|
|
std::vector<RealD> ssq(Nblock);
|
|
|
|
|
|
|
|
sliceNorm(ssq,Src,Orthog);
|
|
|
|
RealD sssum=0;
|
|
|
|
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
|
|
|
|
|
|
|
sliceNorm(residuals,Src,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
|
|
|
|
|
|
|
sliceNorm(residuals,Psi,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
|
|
|
|
|
|
|
// Initial search dir is guess
|
|
|
|
Linop.HermOp(Psi, AP);
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************************************
|
|
|
|
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
|
|
|
|
************************************************************************
|
|
|
|
* O'Leary : R = B - A X
|
|
|
|
* O'Leary : P = M R ; preconditioner M = 1
|
|
|
|
* O'Leary : alpha = PAP^{-1} RMR
|
|
|
|
* O'Leary : beta = RMR^{-1}_old RMR_new
|
|
|
|
* O'Leary : X=X+Palpha
|
|
|
|
* O'Leary : R_new=R_old-AP alpha
|
|
|
|
* O'Leary : P=MR_new+P beta
|
|
|
|
*/
|
|
|
|
|
|
|
|
R = Src - AP;
|
|
|
|
P = R;
|
|
|
|
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
|
|
|
|
|
|
|
int k;
|
|
|
|
for (k = 1; k <= MaxIterations; k++) {
|
|
|
|
|
|
|
|
RealD rrsum=0;
|
|
|
|
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
|
|
|
|
|
|
|
|
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
|
|
|
|
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
|
|
|
|
|
|
|
|
Linop.HermOp(P, AP);
|
|
|
|
|
|
|
|
// Alpha
|
|
|
|
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
|
|
|
|
m_pAp_inv = m_pAp.inverse();
|
|
|
|
m_alpha = m_pAp_inv * m_rr ;
|
|
|
|
|
|
|
|
// Psi, R update
|
|
|
|
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
|
|
|
|
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
|
|
|
|
|
|
|
|
// Beta
|
|
|
|
m_rr_inv = m_rr.inverse();
|
|
|
|
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
|
|
|
m_beta = m_rr_inv *m_rr;
|
|
|
|
|
|
|
|
// Search update
|
|
|
|
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
|
|
|
|
P= AP;
|
|
|
|
|
|
|
|
/*********************
|
|
|
|
* convergence monitor
|
|
|
|
*********************
|
|
|
|
*/
|
|
|
|
RealD max_resid=0;
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
RealD rr = real(m_rr(b,b))/ssq[b];
|
|
|
|
if ( rr > max_resid ) max_resid = rr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( max_resid < Tolerance*Tolerance ) {
|
2017-04-10 12:38:20 +01:00
|
|
|
|
2017-04-09 15:42:10 +01:00
|
|
|
std::cout << GridLogMessage<<" Block solver has converged in "
|
|
|
|
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
|
2017-04-10 12:38:20 +01:00
|
|
|
|
2017-04-09 15:42:10 +01:00
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
Linop.HermOp(Psi, AP);
|
|
|
|
AP = AP-Src;
|
|
|
|
std::cout << " Block solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
|
|
|
|
IterationsToComplete = k;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
|
|
|
|
|
|
|
|
if (ErrorOnNoConverge) assert(0);
|
|
|
|
IterationsToComplete = k;
|
|
|
|
}
|
|
|
|
};
|
2017-04-09 16:12:12 +01:00
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// multiRHS conjugate gradient. Dimension zero should be the block direction
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <class Field>
|
|
|
|
class MultiRHSConjugateGradient : public OperatorFunction<Field> {
|
|
|
|
public:
|
|
|
|
|
|
|
|
typedef typename Field::scalar_type scomplex;
|
|
|
|
|
|
|
|
const int blockDim = 0;
|
|
|
|
|
|
|
|
int Nblock;
|
|
|
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
|
|
|
// Defaults true.
|
|
|
|
RealD Tolerance;
|
|
|
|
Integer MaxIterations;
|
|
|
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
|
|
|
|
|
|
|
MultiRHSConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
|
|
: Tolerance(tol),
|
|
|
|
MaxIterations(maxit),
|
|
|
|
ErrorOnNoConverge(err_on_no_conv){};
|
|
|
|
|
|
|
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
|
|
|
{
|
|
|
|
int Orthog = 0; // First dimension is block dim
|
|
|
|
Nblock = Src._grid->_fdimensions[Orthog];
|
|
|
|
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Orthog "<<Orthog<<std::endl;
|
|
|
|
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Nblock "<<Nblock<<std::endl;
|
|
|
|
|
|
|
|
Psi.checkerboard = Src.checkerboard;
|
|
|
|
conformable(Psi, Src);
|
|
|
|
|
|
|
|
Field P(Src);
|
|
|
|
Field AP(Src);
|
|
|
|
Field R(Src);
|
|
|
|
|
|
|
|
std::vector<ComplexD> v_pAp(Nblock);
|
|
|
|
std::vector<RealD> v_rr (Nblock);
|
|
|
|
std::vector<RealD> v_rr_inv(Nblock);
|
|
|
|
std::vector<RealD> v_alpha(Nblock);
|
|
|
|
std::vector<RealD> v_beta(Nblock);
|
|
|
|
|
|
|
|
// Initial residual computation & set up
|
|
|
|
std::vector<RealD> residuals(Nblock);
|
|
|
|
std::vector<RealD> ssq(Nblock);
|
|
|
|
|
|
|
|
sliceNorm(ssq,Src,Orthog);
|
|
|
|
RealD sssum=0;
|
|
|
|
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
|
|
|
|
|
|
|
sliceNorm(residuals,Src,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
|
|
|
|
|
|
|
sliceNorm(residuals,Psi,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
|
|
|
|
|
|
|
// Initial search dir is guess
|
|
|
|
Linop.HermOp(Psi, AP);
|
|
|
|
|
|
|
|
R = Src - AP;
|
|
|
|
P = R;
|
|
|
|
sliceNorm(v_rr,R,Orthog);
|
|
|
|
|
|
|
|
int k;
|
|
|
|
for (k = 1; k <= MaxIterations; k++) {
|
|
|
|
|
|
|
|
RealD rrsum=0;
|
|
|
|
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
|
|
|
|
|
|
|
|
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
|
|
|
|
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
|
|
|
|
|
|
|
|
Linop.HermOp(P, AP);
|
|
|
|
|
|
|
|
// Alpha
|
|
|
|
sliceInnerProductVector(v_pAp,P,AP,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Psi, R update
|
|
|
|
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
|
|
|
|
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
|
|
|
|
|
|
|
|
// Beta
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
v_rr_inv[b] = 1.0/v_rr[b];
|
|
|
|
}
|
|
|
|
sliceNorm(v_rr,R,Orthog);
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
v_beta[b] = v_rr_inv[b] *v_rr[b];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Search update
|
|
|
|
sliceMaddVector(P,v_beta,P,R,Orthog);
|
|
|
|
|
|
|
|
/*********************
|
|
|
|
* convergence monitor
|
|
|
|
*********************
|
|
|
|
*/
|
|
|
|
RealD max_resid=0;
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
RealD rr = v_rr[b]/ssq[b];
|
|
|
|
if ( rr > max_resid ) max_resid = rr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( max_resid < Tolerance*Tolerance ) {
|
|
|
|
std::cout << GridLogMessage<<" MultiRHS solver has converged in "
|
|
|
|
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
|
|
|
|
for(int b=0;b<Nblock;b++){
|
|
|
|
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
Linop.HermOp(Psi, AP);
|
|
|
|
AP = AP-Src;
|
|
|
|
std::cout << " MultiRHS solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
|
|
|
|
IterationsToComplete = k;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
|
|
|
|
|
|
|
|
if (ErrorOnNoConverge) assert(0);
|
|
|
|
IterationsToComplete = k;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-04-09 15:42:10 +01:00
|
|
|
}
|
|
|
|
#endif
|