1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/tests/solver/Test_multigrid_common.h

676 lines
30 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_multigrid_common.h
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_TEST_MULTIGRID_COMMON_H
#define GRID_TEST_MULTIGRID_COMMON_H
namespace Grid {
2019-06-04 20:45:20 +01:00
Zero zero;
// TODO: Can think about having one parameter struct per level and then a
// vector of these structs. How well would that work together with the
// serialization strategy of Grid?
// clang-format off
struct MultiGridParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MultiGridParams,
int, nLevels,
std::vector<std::vector<int>>, blockSizes, // size == nLevels - 1
std::vector<double>, smootherTol, // size == nLevels - 1
std::vector<int>, smootherMaxOuterIter, // size == nLevels - 1
std::vector<int>, smootherMaxInnerIter, // size == nLevels - 1
bool, kCycle,
std::vector<double>, kCycleTol, // size == nLevels - 1
std::vector<int>, kCycleMaxOuterIter, // size == nLevels - 1
std::vector<int>, kCycleMaxInnerIter, // size == nLevels - 1
double, coarseSolverTol,
int, coarseSolverMaxOuterIter,
int, coarseSolverMaxInnerIter);
// constructor with default values
MultiGridParams(int _nLevels = 2,
std::vector<std::vector<int>> _blockSizes = {{4, 4, 4, 4}},
std::vector<double> _smootherTol = {1e-14},
std::vector<int> _smootherMaxOuterIter = {4},
std::vector<int> _smootherMaxInnerIter = {4},
bool _kCycle = true,
std::vector<double> _kCycleTol = {1e-1},
std::vector<int> _kCycleMaxOuterIter = {2},
std::vector<int> _kCycleMaxInnerIter = {5},
double _coarseSolverTol = 5e-2,
int _coarseSolverMaxOuterIter = 10,
int _coarseSolverMaxInnerIter = 500)
: nLevels(_nLevels)
, blockSizes(_blockSizes)
, smootherTol(_smootherTol)
, smootherMaxOuterIter(_smootherMaxOuterIter)
, smootherMaxInnerIter(_smootherMaxInnerIter)
, kCycle(_kCycle)
, kCycleTol(_kCycleTol)
, kCycleMaxOuterIter(_kCycleMaxOuterIter)
, kCycleMaxInnerIter(_kCycleMaxInnerIter)
, coarseSolverTol(_coarseSolverTol)
, coarseSolverMaxOuterIter(_coarseSolverMaxOuterIter)
, coarseSolverMaxInnerIter(_coarseSolverMaxInnerIter)
{}
};
// clang-format on
void checkParameterValidity(MultiGridParams const &params) {
auto correctSize = params.nLevels - 1;
assert(correctSize == params.blockSizes.size());
assert(correctSize == params.smootherTol.size());
assert(correctSize == params.smootherMaxOuterIter.size());
assert(correctSize == params.smootherMaxInnerIter.size());
assert(correctSize == params.kCycleTol.size());
assert(correctSize == params.kCycleMaxOuterIter.size());
assert(correctSize == params.kCycleMaxInnerIter.size());
}
struct LevelInfo {
public:
std::vector<std::vector<int>> Seeds;
std::vector<GridCartesian *> Grids;
std::vector<GridParallelRNG> PRNGs;
LevelInfo(GridCartesian *FineGrid, MultiGridParams const &mgParams) {
auto nCoarseLevels = mgParams.blockSizes.size();
assert(nCoarseLevels == mgParams.nLevels - 1);
// set up values for finest grid
Grids.push_back(FineGrid);
Seeds.push_back({1, 2, 3, 4});
PRNGs.push_back(GridParallelRNG(Grids.back()));
PRNGs.back().SeedFixedIntegers(Seeds.back());
// set up values for coarser grids
for(int level = 1; level < mgParams.nLevels; ++level) {
auto Nd = Grids[level - 1]->_ndimension;
auto tmp = Grids[level - 1]->_fdimensions;
assert(tmp.size() == Nd);
Seeds.push_back(std::vector<int>(Nd));
for(int d = 0; d < Nd; ++d) {
tmp[d] /= mgParams.blockSizes[level - 1][d];
Seeds[level][d] = (level)*Nd + d + 1;
}
2019-06-04 20:45:20 +01:00
Grids.push_back(SpaceTimeGrid::makeFourDimGrid(tmp, Grids[level - 1]->_simd_layout, GridDefaultMpi()));
PRNGs.push_back(GridParallelRNG(Grids[level]));
PRNGs[level].SeedFixedIntegers(Seeds[level]);
}
std::cout << GridLogMessage << "Constructed " << mgParams.nLevels << " levels" << std::endl;
for(int level = 0; level < mgParams.nLevels; ++level) {
std::cout << GridLogMessage << "level = " << level << ":" << std::endl;
Grids[level]->show_decomposition();
}
}
};
template<class Field> class MultiGridPreconditionerBase : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual ~MultiGridPreconditionerBase() = default;
virtual void setup() = 0;
virtual void operator()(Field const &in, Field &out) = 0;
virtual void runChecks(RealD tolerance) = 0;
virtual void reportTimings() = 0;
};
template<class Fobj, class CComplex, int nBasis, int nCoarserLevels, class Matrix>
class MultiGridPreconditioner : public MultiGridPreconditionerBase<Lattice<Fobj>> {
public:
/////////////////////////////////////////////
// Type Definitions
/////////////////////////////////////////////
using MultiGridPreconditionerBase<Lattice<Fobj>>::operator();
// clang-format off
typedef Aggregation<Fobj, CComplex, nBasis> Aggregates;
typedef CoarsenedMatrix<Fobj, CComplex, nBasis> CoarseDiracMatrix;
typedef typename Aggregates::CoarseVector CoarseVector;
typedef typename Aggregates::siteVector CoarseSiteVector;
typedef Matrix FineDiracMatrix;
typedef typename Aggregates::FineField FineVector;
typedef MultiGridPreconditioner<CoarseSiteVector, iScalar<CComplex>, nBasis, nCoarserLevels - 1, CoarseDiracMatrix> NextPreconditionerLevel;
// clang-format on
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
int _CurrentLevel;
int _NextCoarserLevel;
MultiGridParams &_MultiGridParams;
LevelInfo & _LevelInfo;
FineDiracMatrix & _FineMatrix;
FineDiracMatrix & _SmootherMatrix;
Aggregates _Aggregates;
CoarseDiracMatrix _CoarseMatrix;
std::unique_ptr<NextPreconditionerLevel> _NextPreconditionerLevel;
GridStopWatch _SetupTotalTimer;
GridStopWatch _SetupCreateSubspaceTimer;
GridStopWatch _SetupProjectToChiralitiesTimer;
GridStopWatch _SetupCoarsenOperatorTimer;
GridStopWatch _SetupNextLevelTimer;
GridStopWatch _SolveTotalTimer;
GridStopWatch _SolveRestrictionTimer;
GridStopWatch _SolveProlongationTimer;
GridStopWatch _SolveSmootherTimer;
GridStopWatch _SolveNextLevelTimer;
/////////////////////////////////////////////
// Member Functions
/////////////////////////////////////////////
MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat)
: _CurrentLevel(mgParams.nLevels - (nCoarserLevels + 1)) // _Level = 0 corresponds to finest
, _NextCoarserLevel(_CurrentLevel + 1) // incremented for instances on coarser levels
, _MultiGridParams(mgParams)
, _LevelInfo(LvlInfo)
, _FineMatrix(FineMat)
, _SmootherMatrix(SmootherMat)
, _Aggregates(_LevelInfo.Grids[_NextCoarserLevel], _LevelInfo.Grids[_CurrentLevel], 0)
, _CoarseMatrix(*_LevelInfo.Grids[_NextCoarserLevel]) {
_NextPreconditionerLevel
= std::unique_ptr<NextPreconditionerLevel>(new NextPreconditionerLevel(_MultiGridParams, _LevelInfo, _CoarseMatrix, _CoarseMatrix));
resetTimers();
}
void setup() {
_SetupTotalTimer.Start();
static_assert((nBasis & 0x1) == 0, "MG Preconditioner only supports an even number of basis vectors");
int nb = nBasis / 2;
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
_SetupCreateSubspaceTimer.Start();
_Aggregates.CreateSubspace(_LevelInfo.PRNGs[_CurrentLevel], fineMdagMOp, nb);
_SetupCreateSubspaceTimer.Stop();
_SetupProjectToChiralitiesTimer.Start();
2019-06-04 20:45:20 +01:00
FineVector tmp1(_Aggregates.subspace[0].Grid());
FineVector tmp2(_Aggregates.subspace[0].Grid());
for(int n = 0; n < nb; n++) {
auto tmp1 = _Aggregates.subspace[n];
G5C(tmp2, _Aggregates.subspace[n]);
axpby(_Aggregates.subspace[n], 0.5, 0.5, tmp1, tmp2);
axpby(_Aggregates.subspace[n + nb], 0.5, -0.5, tmp1, tmp2);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Chirally doubled vector " << n << ". "
<< "norm2(vec[" << n << "]) = " << norm2(_Aggregates.subspace[n]) << ". "
<< "norm2(vec[" << n + nb << "]) = " << norm2(_Aggregates.subspace[n + nb]) << std::endl;
}
_SetupProjectToChiralitiesTimer.Stop();
_SetupCoarsenOperatorTimer.Start();
_CoarseMatrix.CoarsenOperator(_LevelInfo.Grids[_CurrentLevel], fineMdagMOp, _Aggregates);
_SetupCoarsenOperatorTimer.Stop();
_SetupNextLevelTimer.Start();
_NextPreconditionerLevel->setup();
_SetupNextLevelTimer.Stop();
_SetupTotalTimer.Stop();
}
virtual void operator()(FineVector const &in, FineVector &out) {
2019-06-04 20:45:20 +01:00
conformable(_LevelInfo.Grids[_CurrentLevel], in.Grid());
conformable(in, out);
// TODO: implement a W-cycle
if(_MultiGridParams.kCycle)
kCycle(in, out);
else
vCycle(in, out);
}
void vCycle(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
RealD inputNorm = norm2(in);
CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]);
CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]);
coarseSol = zero;
2019-06-04 20:45:20 +01:00
FineVector fineTmp(in.Grid());
auto maxSmootherIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel];
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel],
maxSmootherIter,
fineTrivialPreconditioner,
_MultiGridParams.smootherMaxInnerIter[_CurrentLevel],
false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineSmootherMdagMOp(_SmootherMatrix);
_SolveRestrictionTimer.Start();
_Aggregates.ProjectToSubspace(coarseSrc, in);
_SolveRestrictionTimer.Stop();
_SolveNextLevelTimer.Start();
(*_NextPreconditionerLevel)(coarseSrc, coarseSol);
_SolveNextLevelTimer.Stop();
_SolveProlongationTimer.Start();
_Aggregates.PromoteFromSubspace(coarseSol, out);
_SolveProlongationTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
auto r = norm2(fineTmp);
auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm);
_SolveSmootherTimer.Start();
fineFGMRES(fineSmootherMdagMOp, in, out);
_SolveSmootherTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
r = norm2(fineTmp);
auto residualAfterPostSmoother = std::sqrt(r / inputNorm);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": V-cycle: Input norm = " << std::sqrt(inputNorm)
<< " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother
<< std::endl;
_SolveTotalTimer.Stop();
}
void kCycle(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
RealD inputNorm = norm2(in);
CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]);
CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]);
coarseSol = zero;
2019-06-04 20:45:20 +01:00
FineVector fineTmp(in.Grid());
auto smootherMaxIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel];
auto kCycleMaxIter = _MultiGridParams.kCycleMaxOuterIter[_CurrentLevel] * _MultiGridParams.kCycleMaxInnerIter[_CurrentLevel];
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel],
smootherMaxIter,
fineTrivialPreconditioner,
_MultiGridParams.smootherMaxInnerIter[_CurrentLevel],
false);
FlexibleGeneralisedMinimalResidual<CoarseVector> coarseFGMRES(_MultiGridParams.kCycleTol[_CurrentLevel],
kCycleMaxIter,
*_NextPreconditionerLevel,
_MultiGridParams.kCycleMaxInnerIter[_CurrentLevel],
false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineSmootherMdagMOp(_SmootherMatrix);
MdagMLinearOperator<CoarseDiracMatrix, CoarseVector> coarseMdagMOp(_CoarseMatrix);
_SolveRestrictionTimer.Start();
_Aggregates.ProjectToSubspace(coarseSrc, in);
_SolveRestrictionTimer.Stop();
_SolveNextLevelTimer.Start();
coarseFGMRES(coarseMdagMOp, coarseSrc, coarseSol);
_SolveNextLevelTimer.Stop();
_SolveProlongationTimer.Start();
_Aggregates.PromoteFromSubspace(coarseSol, out);
_SolveProlongationTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
auto r = norm2(fineTmp);
auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm);
_SolveSmootherTimer.Start();
fineFGMRES(fineSmootherMdagMOp, in, out);
_SolveSmootherTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
r = norm2(fineTmp);
auto residualAfterPostSmoother = std::sqrt(r / inputNorm);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": K-cycle: Input norm = " << std::sqrt(inputNorm)
<< " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother
<< std::endl;
_SolveTotalTimer.Stop();
}
void runChecks(RealD tolerance) {
std::vector<FineVector> fineTmps(7, _LevelInfo.Grids[_CurrentLevel]);
std::vector<CoarseVector> coarseTmps(4, _LevelInfo.Grids[_NextCoarserLevel]);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<CoarseDiracMatrix, CoarseVector> coarseMdagMOp(_CoarseMatrix);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (M - (Mdiag + Σ_μ Mdir_μ)) * v" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_CurrentLevel], fineTmps[0]);
fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // M * v
fineMdagMOp.OpDiag(fineTmps[0], fineTmps[2]); // Mdiag * v
fineTmps[4] = zero;
for(int dir = 0; dir < 4; dir++) { // Σ_μ Mdir_μ * v
for(auto disp : {+1, -1}) {
fineMdagMOp.OpDir(fineTmps[0], fineTmps[3], dir, disp);
fineTmps[4] = fineTmps[4] + fineTmps[3];
}
}
fineTmps[5] = fineTmps[2] + fineTmps[4]; // (Mdiag + Σ_μ Mdir_μ) * v
fineTmps[6] = fineTmps[1] - fineTmps[5];
auto deviation = std::sqrt(norm2(fineTmps[6]) / norm2(fineTmps[1]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(M * v) = " << norm2(fineTmps[1]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Mdiag * v) = " << norm2(fineTmps[2]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Σ_μ Mdir_μ * v) = " << norm2(fineTmps[4]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2((Mdiag + Σ_μ Mdir_μ) * v) = " << norm2(fineTmps[5]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - P R) v" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
for(auto i = 0; i < _Aggregates.subspace.size(); ++i) {
_Aggregates.ProjectToSubspace(coarseTmps[0], _Aggregates.subspace[i]); // R v_i
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P R v_i
fineTmps[1] = _Aggregates.subspace[i] - fineTmps[0]; // v_i - P R v_i
deviation = std::sqrt(norm2(fineTmps[1]) / norm2(_Aggregates.subspace[i]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i])
<< " | norm2(R v_i) = " << norm2(coarseTmps[0]) << " | norm2(P R v_i) = " << norm2(fineTmps[0])
<< " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - R P) v_c" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c
_Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[0]); // R P v_c
coarseTmps[2] = coarseTmps[0] - coarseTmps[1]; // v_c - R P v_c
deviation = std::sqrt(norm2(coarseTmps[2]) / norm2(coarseTmps[0]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(v_c) = " << norm2(coarseTmps[0])
<< " | norm2(R P v_c) = " << norm2(coarseTmps[1]) << " | norm2(P v_c) = " << norm2(fineTmps[0])
<< " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (R D P - D_c) v_c" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c
fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // D P v_c
_Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[1]); // R D P v_c
coarseMdagMOp.Op(coarseTmps[0], coarseTmps[2]); // D_c v_c
coarseTmps[3] = coarseTmps[1] - coarseTmps[2]; // R D P v_c - D_c v_c
deviation = std::sqrt(norm2(coarseTmps[3]) / norm2(coarseTmps[1]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(R D P v_c) = " << norm2(coarseTmps[1])
<< " | norm2(D_c v_c) = " << norm2(coarseTmps[2]) << " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
coarseMdagMOp.Op(coarseTmps[0], coarseTmps[1]); // D_c v_c
coarseMdagMOp.AdjOp(coarseTmps[1], coarseTmps[2]); // D_c^dag D_c v_c
auto dot = innerProduct(coarseTmps[0], coarseTmps[2]); //v_c^dag D_c^dag D_c v_c
deviation = std::abs(imag(dot)) / std::abs(real(dot));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Re(v_c^dag D_c^dag D_c v_c) = " << real(dot)
<< " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) << " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
_NextPreconditionerLevel->runChecks(tolerance);
}
void reportTimings() {
// clang-format off
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Sum total " << _SetupTotalTimer.Elapsed() + _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup total " << _SetupTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup create subspace " << _SetupCreateSubspaceTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup project chiral " << _SetupProjectToChiralitiesTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup coarsen operator " << _SetupCoarsenOperatorTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup next level " << _SetupNextLevelTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve restriction " << _SolveRestrictionTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve prolongation " << _SolveProlongationTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve next level " << _SolveNextLevelTimer.Elapsed() << std::endl;
// clang-format on
_NextPreconditionerLevel->reportTimings();
}
void resetTimers() {
_SetupTotalTimer.Reset();
_SetupCreateSubspaceTimer.Reset();
_SetupProjectToChiralitiesTimer.Reset();
_SetupCoarsenOperatorTimer.Reset();
_SetupNextLevelTimer.Reset();
_SolveTotalTimer.Reset();
_SolveRestrictionTimer.Reset();
_SolveProlongationTimer.Reset();
_SolveSmootherTimer.Reset();
_SolveNextLevelTimer.Reset();
_NextPreconditionerLevel->resetTimers();
}
};
// Specialization for the coarsest level
template<class Fobj, class CComplex, int nBasis, class Matrix>
class MultiGridPreconditioner<Fobj, CComplex, nBasis, 0, Matrix> : public MultiGridPreconditionerBase<Lattice<Fobj>> {
public:
/////////////////////////////////////////////
// Type Definitions
/////////////////////////////////////////////
using MultiGridPreconditionerBase<Lattice<Fobj>>::operator();
typedef Matrix FineDiracMatrix;
typedef Lattice<Fobj> FineVector;
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
int _CurrentLevel;
MultiGridParams &_MultiGridParams;
LevelInfo & _LevelInfo;
FineDiracMatrix &_FineMatrix;
FineDiracMatrix &_SmootherMatrix;
GridStopWatch _SolveTotalTimer;
GridStopWatch _SolveSmootherTimer;
/////////////////////////////////////////////
// Member Functions
/////////////////////////////////////////////
MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat)
: _CurrentLevel(mgParams.nLevels - (0 + 1))
, _MultiGridParams(mgParams)
, _LevelInfo(LvlInfo)
, _FineMatrix(FineMat)
, _SmootherMatrix(SmootherMat) {
resetTimers();
}
void setup() {}
virtual void operator()(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
2019-06-04 20:45:20 +01:00
conformable(_LevelInfo.Grids[_CurrentLevel], in.Grid());
conformable(in, out);
auto coarseSolverMaxIter = _MultiGridParams.coarseSolverMaxOuterIter * _MultiGridParams.coarseSolverMaxInnerIter;
// On the coarsest level we only have what I above call the fine level, no coarse one
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(
_MultiGridParams.coarseSolverTol, coarseSolverMaxIter, fineTrivialPreconditioner, _MultiGridParams.coarseSolverMaxInnerIter, false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
_SolveSmootherTimer.Start();
fineFGMRES(fineMdagMOp, in, out);
_SolveSmootherTimer.Stop();
_SolveTotalTimer.Stop();
}
void runChecks(RealD tolerance) {}
void reportTimings() {
// clang-format off
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl;
// clang-format on
}
void resetTimers() {
_SolveTotalTimer.Reset();
_SolveSmootherTimer.Reset();
}
};
template<class Fobj, class CComplex, int nBasis, int nLevels, class Matrix>
using NLevelMGPreconditioner = MultiGridPreconditioner<Fobj, CComplex, nBasis, nLevels - 1, Matrix>;
template<class Fobj, class CComplex, int nBasis, class Matrix>
std::unique_ptr<MultiGridPreconditionerBase<Lattice<Fobj>>>
createMGInstance(MultiGridParams &mgParams, LevelInfo &levelInfo, Matrix &FineMat, Matrix &SmootherMat) {
#define CASE_FOR_N_LEVELS(nLevels) \
case nLevels: \
return std::unique_ptr<NLevelMGPreconditioner<Fobj, CComplex, nBasis, nLevels, Matrix>>( \
new NLevelMGPreconditioner<Fobj, CComplex, nBasis, nLevels, Matrix>(mgParams, levelInfo, FineMat, SmootherMat)); \
break;
switch(mgParams.nLevels) {
CASE_FOR_N_LEVELS(2);
CASE_FOR_N_LEVELS(3);
CASE_FOR_N_LEVELS(4);
default:
std::cout << GridLogError << "We currently only support nLevels ∈ {2, 3, 4}" << std::endl;
exit(EXIT_FAILURE);
break;
}
#undef CASE_FOR_N_LEVELS
}
}
#endif