1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/spin/Dirac.h

233 lines
6.7 KiB
C
Raw Normal View History

2017-01-30 17:07:09 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: lib/qcd/spin/Dirac.h
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
2018-01-14 21:52:27 +00:00
/* END LEGAL */
#ifndef GRID_QCD_DIRAC_H
#define GRID_QCD_DIRAC_H
2018-01-14 21:52:27 +00:00
// Gamma matrices using the code generated by the Mathematica notebook
// gamma-gen/gamma-gen.nb in Gamma.cc & Gamma.h
////////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/spin/Gamma.h>
2018-01-14 21:52:27 +00:00
NAMESPACE_BEGIN(Grid);
// Dirac algebra adjoint operator (not in QCD:: to overload other adj)
inline QCD::Gamma adj(const QCD::Gamma &g)
{
2018-01-14 21:52:27 +00:00
return QCD::Gamma (QCD::Gamma::adj[g.g]);
}
2018-01-14 21:52:27 +00:00
// Dirac algebra mutliplication operator
inline Gamma operator*(const Gamma &g1, const Gamma &g2)
{
2018-01-14 21:52:27 +00:00
return Gamma (Gamma::mul[g1.g][g2.g]);
}
// general left multiply
template<class vtype>
inline auto operator*(const Gamma &G, const iScalar<vtype> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
{
iScalar<vtype> ret;
ret._internal=G*arg._internal;
return ret;
}
template<class vtype,int N>
inline auto operator*(const Gamma &G, const iVector<vtype, N> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N>>::type
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i]=G*arg._internal[i];
}
return ret;
}
template<class vtype, int N>
inline auto operator*(const Gamma &G, const iMatrix<vtype, N> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
2018-01-14 21:52:27 +00:00
for(int j=0;j<N;j++){
ret._internal[i][j]=G*arg._internal[i][j];
}}
return ret;
}
// general right multiply
template<class vtype>
inline auto operator*(const iScalar<vtype> &arg, const Gamma &G)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
{
iScalar<vtype> ret;
ret._internal=arg._internal*G;
return ret;
}
template<class vtype, int N>
inline auto operator * (const iMatrix<vtype, N> &arg, const Gamma &G)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
2018-01-14 21:52:27 +00:00
for(int j=0;j<N;j++){
ret._internal[i][j]=arg._internal[i][j]*G;
}}
return ret;
}
// Gamma-left matrices gL_mu = g_mu*(1 - g5)
////////////////////////////////////////////////////////////////////////////////
class GammaL
{
public:
typedef Gamma::Algebra Algebra;
Gamma gamma;
public:
GammaL(const Algebra initg): gamma(initg) {}
GammaL(const Gamma initg): gamma(initg) {}
};
// vector multiply
template<class vtype>
inline auto operator*(const GammaL &gl, const iVector<vtype, Ns> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ns>, SpinorIndex>::value, iVector<vtype, Ns>>::type
{
iVector<vtype, Ns> buf;
buf(0) = 0.;
buf(1) = 0.;
buf(2) = 2.*arg(2);
buf(3) = 2.*arg(3);
return gl.gamma*buf;
};
// matrix left multiply
template<class vtype>
inline auto operator*(const GammaL &gl, const iMatrix<vtype, Ns> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ns>, SpinorIndex>::value, iMatrix<vtype, Ns>>::type
{
iMatrix<vtype, Ns> buf;
for(unsigned int i = 0; i < Ns; ++i)
2018-01-14 21:52:27 +00:00
{
buf(0, i) = 0.;
buf(1, i) = 0.;
buf(2, i) = 2.*arg(2, i);
buf(3, i) = 2.*arg(3, i);
}
return gl.gamma*buf;
};
// matrix right multiply
template<class vtype>
inline auto operator*(const iMatrix<vtype, Ns> &arg, const GammaL &gl)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ns>, SpinorIndex>::value, iMatrix<vtype, Ns>>::type
{
iMatrix<vtype, Ns> buf;
buf = arg*gl.gamma;
for(unsigned int i = 0; i < Ns; ++i)
2018-01-14 21:52:27 +00:00
{
buf(i, 0) = 0.;
buf(i, 1) = 0.;
buf(i, 2) = 2.*buf(i, 2);
buf(i, 3) = 2.*buf(i, 3);
}
return buf;
};
//general left multiply
template<class vtype>
inline auto operator*(const GammaL &gl, const iScalar<vtype> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
{
iScalar<vtype> ret;
ret._internal=gl*arg._internal;
return ret;
}
template<class vtype,int N>
inline auto operator*(const GammaL &gl, const iVector<vtype, N> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N>>::type
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i]=gl*arg._internal[i];
}
return ret;
}
template<class vtype, int N>
inline auto operator*(const GammaL &gl, const iMatrix<vtype, N> &arg)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
2018-01-14 21:52:27 +00:00
for(int j=0;j<N;j++){
ret._internal[i][j]=gl*arg._internal[i][j];
}}
return ret;
}
//general right multiply
template<class vtype>
inline auto operator*(const iScalar<vtype> &arg, const GammaL &gl)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
{
iScalar<vtype> ret;
ret._internal=arg._internal*gl;
return ret;
}
template<class vtype, int N>
inline auto operator * (const iMatrix<vtype, N> &arg, const GammaL &gl)
2018-01-14 21:52:27 +00:00
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
2018-01-14 21:52:27 +00:00
for(int j=0;j<N;j++){
ret._internal[i][j]=arg._internal[i][j]*gl;
}}
return ret;
}
2018-01-14 21:52:27 +00:00
NAMESPACE_END(Grid);
#endif