1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/extras/Hadrons/Modules/MScalar/VPCounterTerms.cc

258 lines
9.3 KiB
C++
Raw Normal View History

#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TVPCounterTerms implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TVPCounterTerms::TVPCounterTerms(const std::string name)
: Module<VPCounterTermsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TVPCounterTerms::getInput(void)
{
std::vector<std::string> in = {par().source};
return in;
}
std::vector<std::string> TVPCounterTerms::getOutput(void)
{
std::vector<std::string> out;
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TVPCounterTerms::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = "_" + getName() + "_DinvSrc";
phatsqName_ = "_" + getName() + "_pHatSquared";
prop0Name_ = getName() + "_freeProp";
twoscalarName_ = getName() + "_2scalarProp";
twoscalarVertexName_ = getName() + "_2scalarProp_withvertex";
psquaredName_ = getName() + "_psquaredProp";
env().registerLattice<ScalarField>(freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(phaseName_[mu]);
}
env().registerLattice<ScalarField>(phatsqName_);
env().registerLattice<ScalarField>(GFSrcName_);
env().registerLattice<ScalarField>(prop0Name_);
env().registerLattice<ScalarField>(twoscalarName_);
env().registerLattice<ScalarField>(twoscalarVertexName_);
env().registerLattice<ScalarField>(psquaredName_);
}
// execution ///////////////////////////////////////////////////////////////////
void TVPCounterTerms::execute(void)
{
ScalarField &source = *env().getObject<ScalarField>(par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
ScalarField buf(env().getGrid()), tmp_vp(env().getGrid());
// Momentum-space free scalar propagator
ScalarField &G = *env().createLattice<ScalarField>(freeMomPropName_);
SIMPL::MomentumSpacePropagator(G, par().mass);
// Phases and hat{p}^2
ScalarField &phatsq = *env().createLattice<ScalarField>(phatsqName_);
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Calculating shift phases..." << std::endl;
phatsq = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
phase_.push_back(env().createLattice<ScalarField>(phaseName_[mu]));
LatticeCoordinate(buf, mu);
*(phase_[mu]) = exp(ci*twoPiL*buf);
buf = 2.*sin(.5*twoPiL*buf);
phatsq = phatsq + buf*buf;
}
// G*F*src
ScalarField &GFSrc = *env().createLattice<ScalarField>(GFSrcName_);
fft.FFT_all_dim(GFSrc, source, FFT::forward);
GFSrc = G*GFSrc;
// Position-space free scalar propagator
ScalarField &prop0 = *env().createLattice<ScalarField>(prop0Name_);
prop0 = GFSrc;
fft.FFT_all_dim(prop0, prop0, FFT::backward);
// Propagators for counter-terms
ScalarField &twoscalarProp = *env().createLattice<ScalarField>(twoscalarName_);
ScalarField &twoscalarVertexProp = *env().createLattice<ScalarField>(twoscalarVertexName_);
ScalarField &psquaredProp = *env().createLattice<ScalarField>(psquaredName_);
twoscalarProp = G*GFSrc;
fft.FFT_all_dim(twoscalarProp, twoscalarProp, FFT::backward);
twoscalarVertexProp = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
buf = GFSrc;
twoscalarVertexProp = twoscalarVertexProp + .5*((*phase_[mu]) + adj(*phase_[mu]))*buf;
}
twoscalarVertexProp = G*twoscalarVertexProp;
fft.FFT_all_dim(twoscalarVertexProp, twoscalarVertexProp, FFT::backward);
psquaredProp = G*phatsq*GFSrc;
fft.FFT_all_dim(psquaredProp, psquaredProp, FFT::backward);
// Open output files if necessary
std::vector<TComplex> vecBuf;
std::vector<Complex> result;
ScalarField vpPhase(env().getGrid());
std::vector<CorrWriter *> writer;
std::vector<ScalarField> momphases;
if (!par().output.empty())
{
LOG(Message) << "Preparing output files..." << std::endl;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
// Open output files
std::string filename = par().output + "_" + std::to_string(mom[0])
+ std::to_string(mom[1])
+ std::to_string(mom[2])
+ "." +
std::to_string(env().getTrajectory());
if (env().getGrid()->IsBoss())
{
CorrWriter *writer_i = new CorrWriter(filename);
writer.push_back(writer_i);
write(*writer[i_p], "mass", par().mass);
}
// Calculate phase factors
vpPhase = Complex(1.0,0.0);
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
for (unsigned int momcount = 0; momcount < mom[j]; ++momcount)
{
vpPhase = vpPhase*(*phase_[j]);
}
}
vpPhase = adj(vpPhase);
momphases.push_back(vpPhase);
}
}
// Contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
buf = adj(Cshift(prop0, nu, -1));
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// Three-scalar loop (no vertex)
tmp_vp = buf * Cshift(twoscalarProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
vpPhase = tmp_vp*momphases[i_p];
sliceSum(vpPhase, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
if (env().getGrid()->IsBoss())
{
write(*writer[i_p],
"NoVertex_"+std::to_string(mu)+"_"+std::to_string(nu),
result);
}
}
}
// Three-scalar loop (tadpole vertex)
tmp_vp = buf * Cshift(twoscalarVertexProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarVertexProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
vpPhase = tmp_vp*momphases[i_p];
sliceSum(vpPhase, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
if (env().getGrid()->IsBoss())
{
write(*writer[i_p],
"TadVertex_"+std::to_string(mu)+"_"+std::to_string(nu),
result);
}
}
}
// Three-scalar loop (hat{p}^2 insertion)
tmp_vp = buf * Cshift(psquaredProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * psquaredProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
vpPhase = tmp_vp*momphases[i_p];
sliceSum(vpPhase, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
if (env().getGrid()->IsBoss())
{
write(*writer[i_p],
"pSquaredInsertion_"+std::to_string(mu)+"_"+std::to_string(nu),
result);
}
}
}
}
}
// Close output files if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
if (env().getGrid()->IsBoss())
{
delete writer[i_p];
}
}
}
}