1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/Grid_cshift_mpi.h

264 lines
7.6 KiB
C
Raw Normal View History

#ifndef _GRID_MPI_CSHIFT_H_
#define _GRID_MPI_CSHIFT_H_
2015-04-03 22:54:13 +01:00
#ifndef MAX
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)>(y)?(y):(x))
2015-04-03 22:54:13 +01:00
#endif
friend Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
Lattice<vobj> ret(rhs._grid);
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift);
// the permute type
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
int splice_dim = rhs._grid->_simd_layout[dimension]>1 && (comm_dim);
if ( !comm_dim ) {
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
} else if ( splice_dim ) {
Cshift_comms_simd(ret,rhs,dimension,shift);
} else {
Cshift_comms(ret,rhs,dimension,shift);
}
return ret;
}
friend void Cshift_comms(Lattice<vobj>& ret,Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0);
sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1);
if ( sshift[0] == sshift[1] ) {
Cshift_comms(ret,rhs,dimension,shift,0x3);
} else {
Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
friend void Cshift_comms_simd(Lattice<vobj>& ret,Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0);
sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1);
if ( sshift[0] == sshift[1] ) {
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
} else {
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
friend void Cshift_comms(Lattice<vobj> &ret,Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs._grid;
Lattice<vobj> temp(rhs._grid);
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
std::vector<vobj,alignedAllocator<vobj> > send_buf(buffer_size);
std::vector<vobj,alignedAllocator<vobj> > recv_buf(buffer_size);
int cb= (cbmask==0x2)? 1 : 0;
int sshift= rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
int offnode = ( x+sshift >= rd );
int sx = (x+sshift)%rd;
int comm_proc = (x+sshift)/rd;
if (!offnode) {
2015-04-03 22:54:13 +01:00
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
2015-04-03 22:54:13 +01:00
} else {
int words = send_buf.size();
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
}
}
}
friend void Cshift_comms_simd(Lattice<vobj> &ret,Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs._grid;
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
int words = sizeof(vobj)/sizeof(vector_type);
std::vector<std::vector<scalar_type> > send_buf_extract(Nsimd,std::vector<scalar_type>(buffer_size*words) );
std::vector<std::vector<scalar_type> > recv_buf_extract(Nsimd,std::vector<scalar_type>(buffer_size*words) );
int bytes = buffer_size*words*sizeof(scalar_type);
std::vector<scalar_type *> pointers(Nsimd); //
std::vector<scalar_type *> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? 1 : 0;
int sshift= grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
std::vector<int> comm_offnode(simd_layout);
std::vector<int> comm_proc (simd_layout); //relative processor coord in dim=dimension
std::vector<int> icoor(grid->Nd());
for(int x=0;x<rd;x++){
int comm_any = 0;
for(int s=0;s<simd_layout;s++) {
int shifted_x = x+s*rd+sshift;
comm_offnode[s] = shifted_x >= ld;
comm_any = comm_any | comm_offnode[s];
comm_proc[s] = shifted_x/ld;
}
int o = 0;
int bo = x*grid->_ostride[dimension];
int sx = (x+sshift)%rd;
if ( comm_any ) {
for(int i=0;i<Nsimd;i++){
pointers[i] = (scalar_type *)&send_buf_extract[i][0];
}
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
for(int i=0;i<Nsimd;i++){
int s;
grid->iCoorFromIindex(icoor,i);
s = icoor[dimension];
if(comm_offnode[s]){
int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc[s],xmit_to_rank,recv_from_rank);
grid->SendToRecvFrom((void *)&send_buf_extract[i][0],
xmit_to_rank,
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
rpointers[i] = (scalar_type *)&recv_buf_extract[i][0];
} else {
rpointers[i] = (scalar_type *)&send_buf_extract[i][0];
}
}
// Permute by swizzling pointers in merge
int permute_slice=0;
int lshift=sshift%ld;
int wrap =lshift/rd;
int num =lshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = 1-wrap;
int toggle_bit = (Nsimd>>(permute_type+1));
int PermuteMap;
for(int i=0;i<Nsimd;i++){
if ( permute_slice ) {
PermuteMap=i^toggle_bit;
pointers[i] = rpointers[PermuteMap];
} else {
pointers[i] = rpointers[i];
}
}
Scatter_plane_merge(ret,pointers,dimension,x,cbmask);
} else {
int permute_slice=0;
int wrap = sshift/rd;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = 1-wrap;
if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type);
else Copy_plane(ret,rhs,dimension,x,sx,cbmask);
}
}
}
#endif