1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/extras/Hadrons/Application.cc

214 lines
6.8 KiB
C++
Raw Normal View History

2016-02-25 12:07:21 +00:00
/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: programs/Hadrons/Application.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
2016-11-28 07:02:15 +00:00
#include <Grid/Hadrons/Application.hpp>
#include <Grid/Hadrons/GeneticScheduler.hpp>
using namespace Grid;
using namespace QCD;
using namespace Hadrons;
2016-05-07 21:26:56 +01:00
#define BIG_SEP "==============="
#define SEP "---------------"
/******************************************************************************
* Application implementation *
******************************************************************************/
2016-11-28 07:02:15 +00:00
// constructors ////////////////////////////////////////////////////////////////
Application::Application(void)
: env_(Environment::getInstance())
{
LOG(Message) << "Modules available:" << std::endl;
auto list = ModuleFactory::getInstance().getBuilderList();
for (auto &m: list)
{
LOG(Message) << " " << m << std::endl;
}
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
locVol_ = 1;
for (unsigned int d = 0; d < dim.size(); ++d)
{
loc[d] /= mpi[d];
locVol_ *= loc[d];
}
LOG(Message) << "Global lattice: " << dim << std::endl;
LOG(Message) << "MPI partition : " << mpi << std::endl;
LOG(Message) << "Local lattice : " << loc << std::endl;
}
2016-11-28 07:02:15 +00:00
Application::Application(const Application::GlobalPar &par)
: Application()
{
setPar(par);
}
Application::Application(const std::string parameterFileName)
: Application()
{
parameterFileName_ = parameterFileName;
}
// access //////////////////////////////////////////////////////////////////////
void Application::setPar(const Application::GlobalPar &par)
{
par_ = par;
2016-12-05 02:44:36 +00:00
env_.setSeed(strToVec<int>(par_.seed));
2016-11-28 07:02:15 +00:00
}
// execute /////////////////////////////////////////////////////////////////////
void Application::run(void)
{
2016-11-28 07:02:15 +00:00
if (!parameterFileName_.empty())
{
parseParameterFile();
}
schedule();
configLoop();
}
// parse parameter file ////////////////////////////////////////////////////////
class ObjectId: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ObjectId,
std::string, name,
std::string, type);
};
void Application::parseParameterFile(void)
{
XmlReader reader(parameterFileName_);
2016-12-05 02:44:36 +00:00
GlobalPar par;
ObjectId id;
LOG(Message) << "Reading '" << parameterFileName_ << "'..." << std::endl;
2016-12-05 02:44:36 +00:00
read(reader, "parameters", par);
setPar(par);
push(reader, "modules");
push(reader, "module");
do
{
read(reader, "id", id);
env_.createModule(id.name, id.type, reader);
} while (reader.nextElement("module"));
pop(reader);
pop(reader);
}
// schedule computation ////////////////////////////////////////////////////////
#define MEM_MSG(size)\
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
void Application::schedule(void)
{
// memory peak function
auto memPeak = [this](const std::vector<unsigned int> &program)
{
unsigned int memPeak;
bool msg;
msg = HadronsLogMessage.isActive();
HadronsLogMessage.Active(false);
env_.dryRun(true);
memPeak = env_.executeProgram(program);
env_.dryRun(false);
env_.freeAll();
HadronsLogMessage.Active(true);
return memPeak;
};
// constrained topological sort using a genetic algorithm
LOG(Message) << "Scheduling computation..." << std::endl;
constexpr unsigned int maxGen = 200, maxCstGen = 50;
unsigned int k = 0, gen, prevPeak, nCstPeak = 0;
auto graph = env_.makeModuleGraph();
auto con = graph.getConnectedComponents();
std::random_device rd;
GeneticScheduler<unsigned int>::Parameters par;
2016-12-05 02:44:36 +00:00
par.popSize = 10;
par.mutationRate = .1;
par.seed = rd();
CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed));
for (unsigned int i = 0; i < con.size(); ++i)
2015-12-02 19:33:34 +00:00
{
GeneticScheduler<unsigned int> scheduler(con[i], memPeak, par);
gen = 0;
do
{
scheduler.nextGeneration();
if (gen != 0)
{
if (prevPeak == scheduler.getMinValue())
{
nCstPeak++;
}
else
{
nCstPeak = 0;
}
}
2016-12-05 02:44:36 +00:00
LOG(Debug) << "generation " << gen << ":\n" << scheduler;
prevPeak = scheduler.getMinValue();
if (gen % 10 == 0)
{
LOG(Iterative) << "Generation " << gen << ": "
<< MEM_MSG(scheduler.getMinValue()) << std::endl;
}
gen++;
} while ((gen < maxGen) and (nCstPeak < maxCstGen));
auto &t = scheduler.getMinSchedule();
LOG(Message) << "Program " << i + 1 << " (memory peak: "
<< MEM_MSG(scheduler.getMinValue()) << "):" << std::endl;
for (unsigned int j = 0; j < t.size(); ++j)
{
program_.push_back(t[j]);
LOG(Message) << std::setw(4) << k + 1 << ": "
<< env_.getModuleName(program_[k]) << std::endl;
k++;
2015-12-02 19:33:34 +00:00
}
}
}
// loop on configurations //////////////////////////////////////////////////////
void Application::configLoop(void)
{
auto range = par_.trajCounter;
for (unsigned int t = range.start; t < range.end; t += range.step)
{
2016-05-07 21:26:56 +01:00
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl;
env_.setTrajectory(t);
env_.executeProgram(program_);
env_.freeAll();
}
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
}