1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/Hadrons/Modules/MNPR/Bilinear.hpp

226 lines
7.8 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
2018-10-15 15:51:45 +01:00
Source file: Hadrons/Modules/MNPR/Bilinear.hpp
2019-02-05 18:55:24 +00:00
Copyright (C) 2015-2019
2018-10-15 15:51:45 +01:00
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
2018-10-15 15:51:45 +01:00
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Bilinear_hpp_
#define Hadrons_Bilinear_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/ModuleFactory.hpp>
//#include <Grid/qcd/utils/PropagatorUtils.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TBilinear *
Performs bilinear contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
Suitable for non exceptional momenta in Rome-Southampton NPR
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNPR)
class BilinearPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(BilinearPar,
std::string, Sin,
std::string, Sout,
std::string, pin,
std::string, pout,
std::string, output);
};
template <typename FImpl1, typename FImpl2>
class TBilinear: public Module<BilinearPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<SpinColourMatrix>, bilinear);
};
public:
// constructor
TBilinear(const std::string name);
// destructor
virtual ~TBilinear(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
//LatticeSpinColourMatrix PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Bilinear, ARG(TBilinear<FIMPL, FIMPL>), MNPR);
/******************************************************************************
* TBilinear implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
TBilinear<FImpl1, FImpl2>::TBilinear(const std::string name)
: Module<BilinearPar>(name)
{}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TBilinear<FImpl1, FImpl2>::setup(void)
{
//env().template registerLattice<LatticeSpinColourMatrix>(getName());
//env().template registerObject<SpinColourMatrix>(getName());
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().Sin, par().Sout};
return input;
}
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
/*
/////Phase propagators//////////////////////////
template <typename FImpl1, typename FImpl2>
LatticeSpinColourMatrix TBilinear<FImpl1, FImpl2>::PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p)
{
GridBase *grid = S._grid;
LatticeComplex pdotx(grid), coor(grid);
std::vector<int> latt_size = grid->_fdimensions;
Complex Ci(0.0,1.0);
pdotx=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotx = pdotx +(TwoPiL * p[mu]) * coor;
}
S = S*exp(-Ci*pdotx);
return S;
}
*/
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TBilinear<FImpl1, FImpl2>::execute(void)
{
/**************************************************************************
Compute the bilinear vertex needed for the NPR.
V(G) = sum_x [ g5 * adj(S'(x,p2)) * g5 * G * S'(x,p1) ]_{si,sj,ci,cj}
G is one of the 16 gamma vertices [I,gmu,g5,g5gmu,sig(mu,nu)]
* G
/ \
p1/ \p2
/ \
/ \
Returns a spin-colour matrix, with indices si,sj, ci,cj
Conventions:
p1 - incoming momenta
p2 - outgoing momenta
q = (p1-p2)
**************************************************************************/
LOG(Message) << "Computing bilinear contractions '" << getName() << "' using"
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
<< std::endl;
BinaryWriter writer(par().output);
// Propogators
LatticeSpinColourMatrix &Sin = *env().template getObject<LatticeSpinColourMatrix>(par().Sin);
LatticeSpinColourMatrix &Sout = *env().template getObject<LatticeSpinColourMatrix>(par().Sout);
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
// momentum on legs
std::vector<Real> pin = strToVec<Real>(par().pin), pout = strToVec<Real>(par().pout);
std::vector<Real> latt_size(pin.begin(), pin.end());
//bilinears
LatticeSpinColourMatrix bilinear_x(env().getGrid());
SpinColourMatrix bilinear;
Gamma g5(Gamma::Algebra::Gamma5);
Result result;
Complex Ci(0.0,1.0);
//
pdotxin=zero;
pdotxout=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
}
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
Sout = Sout*exp(-Ci*pdotxout);
////Set up gamma vector//////////////////////////
std::vector<Gamma> gammavector;
for( int i=0; i<Gamma::nGamma; i++){
Gamma::Algebra gam = i;
gammavector.push_back(Gamma(gam));
}
result.bilinear.resize(Gamma::nGamma);
/////////////////////////////////////////////////
//LatticeSpinMatrix temp = g5*Sout;
////////Form Vertex//////////////////////////////
for (int i=0; i < Gamma::nGamma; i++){
bilinear_x = g5*adj(Sout)*g5*gammavector[i]*Sin;
result.bilinear[i] = sum(bilinear_x); //sum over lattice sites
}
//////////////////////////////////////////////////
write(writer, par().output, result.bilinear);
LOG(Message) << "Complete. Writing results to " << par().output << std:: endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Bilinear_hpp_