1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/tests/hadrons/Test_hadrons_rarekaon.cc

464 lines
21 KiB
C++
Raw Normal View History

/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hadrons/Test_hadrons_rarekaon.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#include <Grid/Hadrons/Application.hpp>
using namespace Grid;
using namespace Hadrons;
/*******************************************************************************
* Macros to reduce code duplication.
******************************************************************************/
// Useful definitions
#define ZERO_MOM "0. 0. 0. 0."
#define INIT_INDEX(s, n) (std::string(s) + "_" + std::to_string(n))
#define ADD_INDEX(s, n) (s + "_" + std::to_string(n))
#define LABEL_3PT(s, t1, t2) ADD_INDEX(INIT_INDEX(s, t1), t2)
#define LABEL_4PT(s, t1, t2, t3) ADD_INDEX(ADD_INDEX(INIT_INDEX(s, t1), t2), t3)
// Wall source/sink macros
#define NAME_3MOM_WALL_SOURCE(t, mom) ("wall_" + std::to_string(t) + "_" + mom)
#define NAME_WALL_SOURCE(t) NAME_3MOM_WALL_SOURCE(t, ZERO_MOM)
#define MAKE_3MOM_WALL_PROP(tW, mom, propName, solver)\
{\
std::string srcName = NAME_3MOM_WALL_SOURCE(tW, mom);\
makeWallSource(application, srcName, tW, mom);\
makePropagator(application, propName, srcName, solver);\
}
#define MAKE_WALL_PROP(tW, propName, solver)\
MAKE_3MOM_WALL_PROP(tW, ZERO_MOM, propName, solver)
// Sequential source macros
#define MAKE_SEQUENTIAL_PROP(tS, qSrc, mom, propName, solver)\
{\
std::string srcName = ADD_INDEX(qSrc + "_seq", tS);\
makeSequentialSource(application, srcName, qSrc, tS, mom);\
makePropagator(application, propName, srcName, solver);\
}
/*******************************************************************************
* Functions for propagator construction.
******************************************************************************/
/*******************************************************************************
* Name: makeSequentialSource
* Purpose: Construct sequential source and add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* qSrc - Input quark for sequential inversion.
* tS - sequential source timeslice.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeSequentialSource(Application &application, std::string srcName,
std::string qSrc, unsigned int tS,
std::string mom = ZERO_MOM)
{
// If the source already exists, don't make the module again.
if (!(Environment::getInstance().hasModule(srcName)))
{
MSource::SeqGamma::Par seqPar;
seqPar.q = qSrc;
seqPar.tA = tS;
seqPar.tB = tS;
seqPar.mom = mom;
seqPar.gamma = Gamma::Algebra::GammaT;
application.createModule<MSource::SeqGamma>(srcName, seqPar);
}
}
/*******************************************************************************
* Name: makeWallSource
* Purpose: Construct wall source and add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* tW - wall source timeslice.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeWallSource(Application &application, std::string srcName,
unsigned int tW, std::string mom = ZERO_MOM)
{
// If the source already exists, don't make the module again.
if (!(Environment::getInstance().hasModule(srcName)))
{
MSource::Wall::Par wallPar;
wallPar.tW = tW;
wallPar.mom = mom;
application.createModule<MSource::Wall>(srcName, wallPar);
}
}
/*******************************************************************************
* Name: makeWallSink
* Purpose: Wall sink smearing of a propagator.
* Parameters: application - main application that stores modules.
* propName - name of input propagator.
* wallName - name of smeared propagator.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeWallSink(Application &application, std::string propName,
std::string wallName, std::string mom = ZERO_MOM)
{
// If the propagator has already been smeared, don't smear it again.
if (!(Environment::getInstance().hasModule(wallName)))
{
MSink::Wall::Par wallPar;
wallPar.q = propName;
wallPar.mom = mom;
application.createModule<MSink::Wall>(wallName, wallPar);
}
}
/*******************************************************************************
* Name: makePropagator
* Purpose: Construct source and propagator then add to application module.
* Parameters: application - main application that stores modules.
* propName - name of propagator module to create.
* srcName - name of source module to use.
* solver - solver to use (default is CG).
* Returns: None.
******************************************************************************/
inline void makePropagator(Application &application, std::string &propName,
std::string &srcName, std::string &solver)
{
// If the propagator already exists, don't make the module again.
if (!(Environment::getInstance().hasModule(propName)))
{
Quark::Par quarkPar;
quarkPar.source = srcName;
quarkPar.solver = solver;
application.createModule<Quark>(propName, quarkPar);
}
}
/*******************************************************************************
* Contraction module creation.
******************************************************************************/
/*******************************************************************************
* Name: mesonContraction
* Purpose: Create meson contraction module and add to application module.
* Parameters: application - main application that stores modules.
* npt - specify n-point correlator (for labelling).
* q1 - quark propagator 1.
* q2 - quark propagator 2.
* label - unique label to construct module name.
* mom - momentum to project (default is zero)
* Returns: None.
******************************************************************************/
inline void mesonContraction(Application &application, unsigned int npt,
std::string &q1, std::string &q2,
std::string &label, std::string mom = ZERO_MOM)
{
std::string modName = std::to_string(npt) + "pt_" + label;
if (!(Environment::getInstance().hasModule(modName)))
{
MContraction::Meson::Par mesPar;
mesPar.output = std::to_string(npt) + "pt/" + label;
mesPar.q1 = q1;
mesPar.q2 = q2;
mesPar.mom = mom;
mesPar.gammas = "<Gamma5 Gamma5>";
application.createModule<MContraction::Meson>(modName, mesPar);
}
}
/*******************************************************************************
* Name: weakContraction[Eye,NonEye]
* Purpose: Create Weak Hamiltonian contraction module for Eye/NonEye topology
* and add to application module.
* Parameters: application - main application that stores modules.
* npt - specify n-point correlator (for labelling).
* q1 - quark propagator 1.
* q2 - quark propagator 2.
* q3 - quark propagator 3.
* q4 - quark propagator 4.
* label - unique label to construct module name.
* Returns: None.
******************************************************************************/
#define HW_CONTRACTION(top) \
inline void weakContraction##top(Application &application, unsigned int npt,\
std::string &q1, std::string &q2, \
std::string &q3, std::string &q4, \
std::string &label)\
{\
std::string modName = std::to_string(npt) + "pt_" + label;\
if (!(Environment::getInstance().hasModule(modName)))\
{\
MContraction::WeakHamiltonian##top::Par weakPar;\
weakPar.output = std::to_string(npt) + "pt/" + label;\
weakPar.q1 = q1;\
weakPar.q2 = q2;\
weakPar.q3 = q3;\
weakPar.q4 = q4;\
application.createModule<MContraction::WeakHamiltonian##top>(modName, weakPar);\
}\
}
HW_CONTRACTION(Eye) // weakContractionEye
HW_CONTRACTION(NonEye) // weakContractionNonEye
int main(int argc, char *argv[])
{
// parse command line //////////////////////////////////////////////////////
std::string configStem;
if (argc < 2)
{
std::cerr << "usage: " << argv[0] << " <configuration filestem> [Grid options]";
std::cerr << std::endl;
std::exit(EXIT_FAILURE);
}
configStem = argv[1];
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
unsigned int light = 0;
unsigned int strange = 1;
unsigned int charm = 2;
std::vector<double> mass = {.01, .04, .2};
std::vector<std::string> flavour = {"l", "s", "c"};
std::vector<std::string> solvers = {"CG_l", "CG_s", "CG_c"};
std::string kmom = "0. 0. 0. 0.";
std::string pmom = "1. 0. 0. 0.";
std::string qmom = "-1. 0. 0. 0.";
std::string mqmom = "1. 0. 0. 0.";
std::vector<unsigned int> tKs = {0, 16};
unsigned int dt_pi = 16;
std::vector<unsigned int> tJs = {8};
unsigned int n_noise = 0;
unsigned int nt = 32;
// Global parameters.
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.seed = "1 2 3 4";
globalPar.genetic.maxGen = 1000;
globalPar.genetic.maxCstGen = 200;
globalPar.genetic.popSize = 20;
globalPar.genetic.mutationRate = .1;
application.setPar(globalPar);
// gauge field
MGauge::Load::Par gaugePar;
gaugePar.file = configStem;
application.createModule<MGauge::Load>("gauge", gaugePar);
for (unsigned int i = 0; i < flavour.size(); ++i)
{
// actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 12;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
application.createModule<MSolver::RBPrecCG>(solvers[i],
solverPar);
}
// Create noise propagators for loops.
if (n_noise > 0)
{
std::vector<std::string> noiseProps_l(n_noise);
std::vector<std::string> noiseProps_c(n_noise);
MSource::Z2::Par noisePar;
noisePar.tA = 0;
noisePar.tB = nt - 1;
for (unsigned int nn = 0; nn < n_noise; ++nn)
{
std::string eta = INIT_INDEX("noise", nn);
std::string loop_l = INIT_INDEX("loop_l", nn);
std::string loop_c = INIT_INDEX("loop_c", nn);
application.createModule<MSource::Z2>(eta, noisePar);
makePropagator(application, loop_l, eta, solvers[light]);
makePropagator(application, loop_c, eta, solvers[charm]);
noiseProps_l.push_back(loop_l);
noiseProps_c.push_back(loop_c);
}
}
// Translate rare kaon decay across specified timeslices.
for (unsigned int i = 0; i < tKs.size(); ++i)
{
// Zero-momentum wall source propagators for kaon and pion.
unsigned int tK = tKs[i];
unsigned int tpi = (tK + dt_pi) % nt;
std::string q_Kl_0 = INIT_INDEX("Q_l_0", tK);
std::string q_pil_0 = INIT_INDEX("Q_l_0", tpi);
MAKE_WALL_PROP(tK, q_Kl_0, solvers[light]);
MAKE_WALL_PROP(tpi, q_pil_0, solvers[light]);
// Wall sources for kaon and pion with momentum insertion. If either
// p or k are zero, or p = k, re-use the existing name to avoid
// duplicating a propagator.
std::string q_Ks_k = INIT_INDEX("Q_Ks_k", tK);
std::string q_Ks_p = INIT_INDEX((kmom == pmom) ? "Q_Ks_k" : "Q_Ks_p", tK);
std::string q_pil_k = INIT_INDEX((kmom == ZERO_MOM) ? "Q_l_0" : "Q_l_k", tpi);
std::string q_pil_p = INIT_INDEX((pmom == kmom) ? q_pil_k : ((pmom == ZERO_MOM) ? "Q_l_0" : "Q_l_p"), tpi);
MAKE_3MOM_WALL_PROP(tK, kmom, q_Ks_k, solvers[strange]);
MAKE_3MOM_WALL_PROP(tK, pmom, q_Ks_p, solvers[strange]);
MAKE_3MOM_WALL_PROP(tpi, kmom, q_pil_k, solvers[light]);
MAKE_3MOM_WALL_PROP(tpi, pmom, q_pil_p, solvers[light]);
// Wall sink-smeared propagators.
std::string q_Kl_0_W = q_Kl_0 + "_W";
std::string q_Ks_k_W = q_Ks_k + "_W";
std::string q_Ks_p_W = q_Ks_p + "_W";
std::string q_pil_0_W = q_pil_0 + "_W";
std::string q_pil_k_W = q_pil_k + "_W";
std::string q_pil_p_W = q_pil_p + "_W";
makeWallSink(application, q_Kl_0, q_Kl_0_W);
makeWallSink(application, q_Ks_k, q_Ks_k_W, kmom);
makeWallSink(application, q_Ks_p, q_Ks_p_W, pmom);
makeWallSink(application, q_pil_0, q_pil_0_W);
makeWallSink(application, q_pil_k, q_pil_k_W, kmom);
makeWallSink(application, q_pil_p, q_pil_p_W, pmom);
/***********************************************************************
* CONTRACTIONS: pi and K 2pt contractions with mom = p, k.
**********************************************************************/
// Wall-Point
std::string PW_K_k = INIT_INDEX("PW_K_k", tK);
std::string PW_K_p = INIT_INDEX("PW_K_p", tK);
std::string PW_pi_k = INIT_INDEX("PW_pi_k", tpi);
std::string PW_pi_p = INIT_INDEX("PW_pi_p", tpi);
mesonContraction(application, 2, q_Kl_0, q_Ks_k, PW_K_k, kmom);
mesonContraction(application, 2, q_Kl_0, q_Ks_p, PW_K_p, pmom);
mesonContraction(application, 2, q_pil_k, q_pil_0, PW_pi_k, kmom);
mesonContraction(application, 2, q_pil_p, q_pil_0, PW_pi_p, pmom);
// Wall-Wall, to be done - requires modification of meson module.
/***********************************************************************
* CONTRACTIONS: 3pt Weak Hamiltonian, C & W (non-Eye type) classes.
**********************************************************************/
std::string HW_CW_k = LABEL_3PT("HW_CW_k", tK, tpi);
std::string HW_CW_p = LABEL_3PT("HW_CW_p", tK, tpi);
weakContractionNonEye(application, 3, q_Kl_0, q_Ks_k, q_pil_k, q_pil_0, HW_CW_k);
weakContractionNonEye(application, 3, q_Kl_0, q_Ks_p, q_pil_p, q_pil_0, HW_CW_p);
/***********************************************************************
* CONTRACTIONS: 3pt sd insertion.
**********************************************************************/
for (unsigned int nn = 0; nn < n_noise; ++nn)
{
/*******************************************************************
* CONTRACTIONS: 3pt Weak Hamiltonian, S and E (Eye type) classes.
******************************************************************/
}
// Perform separate contractions for each t_J position.
for (unsigned int i = 0; i < tJs.size(); ++i)
{
// Sequential sources for current insertions. Local for now,
// gamma_0 only.
unsigned int tJ = (tJs[i] + tK) % nt;
MSource::SeqGamma::Par seqPar;
std::string q_KlCl_q = LABEL_3PT("Q_KlCl_q", tK, tJ);
std::string q_KsCs_mq = LABEL_3PT("Q_KsCs_mq", tK, tJ);
std::string q_pilCl_q = LABEL_3PT("Q_pilCl_q", tpi, tJ);
std::string q_pilCl_mq = LABEL_3PT("Q_pilCl_mq", tpi, tJ);
MAKE_SEQUENTIAL_PROP(tJ, q_Kl_0, qmom, q_KlCl_q, solvers[light]);
MAKE_SEQUENTIAL_PROP(tJ, q_Ks_k, mqmom, q_KsCs_mq, solvers[strange]);
MAKE_SEQUENTIAL_PROP(tJ, q_pil_p, qmom, q_pilCl_q, solvers[light]);
MAKE_SEQUENTIAL_PROP(tJ, q_pil_0, mqmom, q_pilCl_mq, solvers[light]);
/*******************************************************************
* CONTRACTIONS: pi and K 3pt contractions with current insertion.
******************************************************************/
// Wall-Point
std::string C_PW_Kl = LABEL_3PT("C_PW_Kl", tK, tJ);
std::string C_PW_Ksb = LABEL_3PT("C_PW_Ksb", tK, tJ);
std::string C_PW_pilb = LABEL_3PT("C_PW_pilb", tK, tJ);
std::string C_PW_pil = LABEL_3PT("C_PW_pil", tK, tJ);
mesonContraction(application, 3, q_KlCl_q, q_Ks_k, C_PW_Kl, pmom);
mesonContraction(application, 3, q_Kl_0, q_KsCs_mq, C_PW_Ksb, pmom);
mesonContraction(application, 3, q_pil_0, q_pilCl_q, C_PW_pilb, kmom);
mesonContraction(application, 3, q_pilCl_mq, q_pil_p, C_PW_pil, kmom);
// Wall-Wall, to be done.
/*******************************************************************
* CONTRACTIONS: 4pt contractions, C & W classes.
******************************************************************/
std::string CW_Kl = LABEL_4PT("CW_Kl", tK, tJ, tpi);
std::string CW_Ksb = LABEL_4PT("CW_Ksb", tK, tJ, tpi);
std::string CW_pilb = LABEL_4PT("CW_pilb", tK, tJ, tpi);
std::string CW_pil = LABEL_4PT("CW_pil", tK, tJ, tpi);
weakContractionNonEye(application, 4, q_KlCl_q, q_Ks_k, q_pil_p, q_pil_0, CW_Kl);
weakContractionNonEye(application, 4, q_Kl_0, q_KsCs_mq, q_pil_p, q_pil_0, CW_Ksb);
weakContractionNonEye(application, 4, q_Kl_0, q_Ks_k, q_pilCl_q, q_pil_0, CW_pilb);
weakContractionNonEye(application, 4, q_Kl_0, q_Ks_k, q_pil_p, q_pilCl_mq, CW_pil);
/*******************************************************************
* CONTRACTIONS: 4pt contractions, sd insertions.
******************************************************************/
// Sequential sources for each noise propagator.
for (unsigned int nn = 0; nn < n_noise; ++nn)
{
/***************************************************************
* CONTRACTIONS: 4pt contractions, S & E classes.
**************************************************************/
/***************************************************************
* CONTRACTIONS: 4pt contractions, pi0 disconnected loop.
**************************************************************/
}
}
}
// execution
application.saveParameterFile("rarekaon_000_100_tK0_tpi16_tJ8_noloop_mc0.2.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}