1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/tests/debug/Test_general_coarse_hdcg_phys48.cc

514 lines
17 KiB
C++
Raw Normal View History

2024-01-04 17:00:01 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
2024-04-05 06:05:57 +01:00
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
2024-04-01 19:18:40 +01:00
#include <Grid/algorithms/iterative/AdefMrhs.h>
2024-01-04 17:00:01 +00:00
using namespace std;
using namespace Grid;
2024-04-30 10:22:14 +01:00
class HDCGwrapper {
};
/*
2024-01-04 17:00:01 +00:00
template<class Coarsened>
void SaveOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Operator.Grid()->IsBoss());
assert(Operator._A.size()==Operator.geom.npoint);
WR.open(file);
for(int p=0;p<Operator._A.size();p++){
auto tmp = Operator.Cell.Extract(Operator._A[p]);
WR.writeScidacFieldRecord(tmp,record,0,0);
// WR.writeScidacFieldRecord(tmp,record,0,BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class Coarsened>
void LoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
// RD.readScidacFieldRecord(Operator._A[p],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Operator._A[p],record,0);
}
RD.close();
Operator.ExchangeCoarseLinks();
#endif
}
template<class Coarsened>
void ReLoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
auto tmp=Operator.Cell.Extract(Operator._A[p]);
RD.readScidacFieldRecord(tmp,record,0);
Operator._A[p] = Operator.Cell.ExchangePeriodic(tmp);
}
RD.close();
#endif
}
2024-04-30 10:22:14 +01:00
*/
2024-01-04 17:00:01 +00:00
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
//WR.writeScidacFieldRecord(Agg.subspace[b],record,0,BINARYIO_LEXICOGRAPHIC);
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,0);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
// RD.readScidacFieldRecord(Agg.subspace[b],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
2024-01-04 17:00:01 +00:00
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
2024-04-30 10:22:14 +01:00
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
2024-01-04 17:00:01 +00:00
CG(_SmootherOperator,in,out);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
const int nbasis = 62;
2024-01-04 17:00:01 +00:00
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
// Run power method on FineHermOp
2024-04-05 06:05:57 +01:00
// PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
2024-01-04 17:00:01 +00:00
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
2024-04-05 06:05:57 +01:00
// LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
2024-01-04 17:00:01 +00:00
2024-04-01 19:18:40 +01:00
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
2024-04-30 10:22:14 +01:00
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.hdcg.62");
2024-04-01 19:18:40 +01:00
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.new.62");
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=false;
2024-04-30 10:22:14 +01:00
bool load_refine=false;
2024-04-01 19:18:40 +01:00
bool load_mat=false;
bool load_evec=false;
2024-04-05 06:05:57 +01:00
std::cout << GridLogMessage <<" Restoring from checkpoint "<<std::endl;
2024-01-17 21:31:12 +00:00
int refine=1;
2024-01-04 17:00:01 +00:00
if ( load_agg ) {
2024-01-17 21:31:12 +00:00
if ( !(refine) || (!load_refine) ) {
LoadBasis(Aggregates,subspace_file);
}
2024-01-04 17:00:01 +00:00
} else {
2024-04-01 19:18:40 +01:00
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
2024-08-27 17:02:49 +01:00
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); <== last run
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.); // 176 with refinement
2024-04-05 06:05:57 +01:00
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.001,3000,1500,200,0.0); // Attempt to resurrect
2024-01-04 17:00:01 +00:00
SaveBasis(Aggregates,subspace_file);
}
std::cout << "**************************************"<<std::endl;
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
std::cout << "**************************************"<<std::endl;
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
2024-04-05 06:05:57 +01:00
const int nrhs=vComplex::Nsimd()*3; // 12
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
2024-04-30 10:22:14 +01:00
std::cout << "**************************************"<<std::endl;
2024-04-30 10:22:14 +01:00
std::cout << " Coarse Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
2024-01-04 17:00:01 +00:00
2024-04-05 06:05:57 +01:00
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
// FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
// PlainHermOp<CoarseVector> IRLOp (CoarseOp);
2024-04-30 10:22:14 +01:00
Chebyshev<CoarseVector> IRLCheby(0.006,42.0,301); // 1 iter
2024-04-05 06:05:57 +01:00
MrhsHermMatrix MrhsCoarseOp (mrhs);
CoarseVector pm_src(CoarseMrhs);
pm_src = ComplexD(1.0);
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
2024-01-04 17:00:01 +00:00
int Nk=192;
2024-04-05 06:05:57 +01:00
int Nm=384;
2024-01-04 17:00:01 +00:00
int Nstop=Nk;
2024-04-05 06:05:57 +01:00
int Nconv_test_interval=1;
2024-01-04 17:00:01 +00:00
2024-04-05 06:05:57 +01:00
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
Coarse5d,
CoarseMrhs,
nrhs,
IRLCheby,
Nstop,
Nconv_test_interval,
nrhs,
Nk,
Nm,
1e-5,10);
2024-01-04 17:00:01 +00:00
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
2024-04-05 06:05:57 +01:00
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
2024-01-04 17:00:01 +00:00
2024-04-30 10:22:14 +01:00
///////////////////////
// Deflation guesser object
///////////////////////
2024-02-27 16:41:13 +00:00
MultiRHSDeflation<CoarseVector> MrhsGuesser;
2024-04-30 10:22:14 +01:00
2024-01-04 17:00:01 +00:00
//////////////////////////////////////////
2024-04-30 10:22:14 +01:00
// Block projector for coarse/fine
2024-01-04 17:00:01 +00:00
//////////////////////////////////////////
2024-04-30 10:22:14 +01:00
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
//////////////////////////
// Extra HDCG parameters
//////////////////////////
int maxit=3000;
2024-04-01 19:18:40 +01:00
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
2024-04-30 10:22:14 +01:00
RealD lo=2.0;
int ord = 7;
DoNothingGuesser<CoarseVector> DoNothing;
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,CG,DoNothing);
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
2024-01-04 17:00:01 +00:00
2024-04-30 10:22:14 +01:00
if ( load_refine ) {
LoadBasis(Aggregates,refine_file);
} else {
#if 1
// Make a copy as subspace gets block orthogonalised
// HDCG used Pcg to refine
int Refineord = 11;
// Not as good as refining with shifted CG (169 iters), but 10%
// Datapoints
//- refining to 0.001 and shift 0.0 is expensive, but gets to 180 outer iterations
//- refining to 0.001 and shift 0.001 is cheap, but gets to 240 outer iterations
//- refining to 0.0005 and shift 0.0005 is cheap, but gets to 230 outer iterations
//- refining to 0.001 and shift 0.0001 220 iterations
//- refining to 0.001 and shift 0.00003
RealD RefineShift = 0.00003;
RealD RefineTol = 0.001;
ShiftedHermOpLinearOperator<LatticeFermionD> RefineFineHermOp(HermOpEO,RefineShift);
mrhs.CoarsenOperator(RefineFineHermOp,Aggregates,Coarse5d);
2024-04-30 10:22:14 +01:00
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
2024-04-01 19:18:40 +01:00
2024-04-30 10:22:14 +01:00
MrhsProjector.ImportBasis(Aggregates.subspace);
2024-04-01 19:18:40 +01:00
2024-04-30 10:22:14 +01:00
// Lanczos with random start
for(int r=0;r<nrhs;r++){
random(CRNG,c_src[r]);
2024-01-04 17:00:01 +00:00
}
2024-04-30 10:22:14 +01:00
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
MrhsGuesser.ImportEigenBasis(evec,eval);
CGSmoother<LatticeFermionD> CGsmooth(Refineord,ShiftedFineHermOp) ;
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhsRefine(RefineTol, 500,
RefineFineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
// Reload the first pass aggregates, because we orthogonalised them
LoadBasis(Aggregates,subspace_file);
Aggregates.RefineSubspaceHDCG(HermOpEO,
HDCGmrhsRefine,
nrhs);
#else
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
#endif
SaveBasis(Aggregates,refine_file);
2024-01-04 17:00:01 +00:00
}
2024-04-30 10:22:14 +01:00
Aggregates.Orthogonalise();
/*
if ( load_mat ) {
LoadOperator(LittleDiracOp,ldop_file);
} else {
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
SaveOperator(LittleDiracOp,ldop_file);
}
*/
std::cout << "**************************************"<<std::endl;
std::cout << "Coarsen after refine"<<std::endl;
std::cout << "**************************************"<<std::endl;
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
std::cout << "**************************************"<<std::endl;
std::cout << " Recompute coarse evecs ; use old evecs as source "<<std::endl;
std::cout << "**************************************"<<std::endl;
evec.resize(Nm,Coarse5d);
eval.resize(Nm);
for(int r=0;r<nrhs;r++){
// c_src[r]=Zero();
random(CRNG,c_src[r]);
}
for(int e=0;e<evec.size();e++){
// int r = e%nrhs;
// c_src[r] = c_src[r]+evec[r];
}
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
std::cout << "**************************************"<<std::endl;
std::cout << " Reimport coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsGuesser.ImportEigenBasis(evec,eval);
std::cout << "**************************************"<<std::endl;
std::cout << "Calling mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhs(1.0e-8, 500,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
}
HDCGmrhs(src_mrhs,res_mrhs);
2024-01-04 17:00:01 +00:00
// Standard CG
2024-04-05 06:05:57 +01:00
#if 0
{
2024-04-30 10:22:14 +01:00
std::cout << "**************************************"<<std::endl;
std::cout << "Calling red black CG"<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
2024-04-05 06:05:57 +01:00
CGfine(HermOpEO, src, result);
}
#endif
2024-01-04 17:00:01 +00:00
Grid_finalize();
return 0;
}