1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/algorithms/iterative/LocalCoherenceLanczos.h

404 lines
14 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
Copyright (C) 2015
Author: Christoph Lehner <clehner@bnl.gov>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
2018-02-13 11:39:07 +00:00
namespace Grid {
2018-02-13 11:39:07 +00:00
2018-02-20 14:28:38 +00:00
struct LanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
int, Nk, /*Vecs in Lanczos seek converge*/
int, Nm, /*Total vecs in Lanczos include restart*/
RealD, resid, /*residual*/
int, MaxIt,
RealD, betastp, /* ? */
int, MinRes); // Must restart
};
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
bool, doFine,
bool, doFineRead,
bool, doCoarse,
bool, doCoarseRead,
LanczosParams, FineParams,
LanczosParams, CoarseParams,
ChebyParams, Smoother,
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < std::complex<double> >, omega,
RealD, mass,
RealD, M5);
};
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearOperatorBase<FineField> &_Linop;
2018-02-13 02:08:49 +00:00
std::vector<FineField> &subspace;
2018-02-13 02:08:49 +00:00
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
_Linop(linop), subspace(_subspace)
{
assert(subspace.size() >0);
};
void operator()(const CoarseField& in, CoarseField& out) {
2018-02-13 02:08:49 +00:00
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
FineField fin (FineGrid); fin.checkerboard= checkerboard;
FineField fout(FineGrid); fout.checkerboard = checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
OperatorFunction<FineField> & _poly;
LinearOperatorBase<FineField> &_Linop;
2018-02-13 02:08:49 +00:00
std::vector<FineField> &subspace;
2018-02-13 02:08:49 +00:00
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
LinearOperatorBase<FineField>& linop,
std::vector<FineField> & _subspace) :
_poly(poly),
_Linop(linop),
2018-02-13 02:08:49 +00:00
subspace(_subspace)
{ };
void operator()(const CoarseField& in, CoarseField& out) {
2018-02-13 02:08:49 +00:00
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
2018-02-13 02:08:49 +00:00
FineField fin (FineGrid); fin.checkerboard =checkerboard;
FineField fout(FineGrid);fout.checkerboard =checkerboard;
2018-02-13 02:08:49 +00:00
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
2018-02-13 02:08:49 +00:00
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
2018-02-13 02:08:49 +00:00
RealD _coarse_relax_tol;
std::vector<FineField> &_subspace;
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop,
2018-02-13 02:08:49 +00:00
std::vector<FineField> &subspace,
RealD coarse_relax_tol=5.0e3)
2018-02-13 02:08:49 +00:00
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
_coarse_relax_tol(coarse_relax_tol)
{ };
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
RealD eval_poly = eval;
2018-02-13 02:08:49 +00:00
// Apply operator
_Poly(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
2018-02-13 02:08:49 +00:00
GridBase *FineGrid = _subspace[0]._grid;
int checkerboard = _subspace[0].checkerboard;
FineField fB(FineGrid);fB.checkerboard =checkerboard;
FineField fv(FineGrid);fv.checkerboard =checkerboard;
2018-02-13 02:08:49 +00:00
blockPromote(B,fv,_subspace);
_smoother(_Linop,fv,fB);
RealD eval_poly = eval;
_Linop.HermOp(fB,fv);
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
RealD vden = norm2(fB);
RealD vv0 = norm2(fv);
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
};
////////////////////////////////////////////
// Make serializable Lanczos params
////////////////////////////////////////////
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczos
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
protected:
GridBase *_CoarseGrid;
GridBase *_FineGrid;
int _checkerboard;
LinearOperatorBase<FineField> & _FineOp;
2018-02-13 02:08:49 +00:00
std::vector<RealD> &evals_fine;
std::vector<RealD> &evals_coarse;
std::vector<FineField> &subspace;
std::vector<CoarseField> &evec_coarse;
private:
std::vector<RealD> _evals_fine;
std::vector<RealD> _evals_coarse;
std::vector<FineField> _subspace;
std::vector<CoarseField> _evec_coarse;
public:
2018-02-13 02:08:49 +00:00
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
_checkerboard(checkerboard),
evals_fine (_evals_fine),
evals_coarse(_evals_coarse),
subspace (_subspace),
evec_coarse(_evec_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
//////////////////////////////////////////////////////////////////////////
// Alternate constructore, external storage for use by Hadrons module
//////////////////////////////////////////////////////////////////////////
LocalCoherenceLanczos(GridBase *FineGrid,
2018-02-13 02:08:49 +00:00
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard,
std::vector<FineField> &ext_subspace,
std::vector<CoarseField> &ext_coarse,
std::vector<RealD> &ext_eval_fine,
std::vector<RealD> &ext_eval_coarse
) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
2018-02-13 02:08:49 +00:00
_checkerboard(checkerboard),
evals_fine (ext_eval_fine),
evals_coarse(ext_eval_coarse),
subspace (ext_subspace),
evec_coarse (ext_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
2018-02-13 02:08:49 +00:00
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
blockOrthogonalise(InnerProd,subspace);std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
};
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = ::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
2018-02-13 02:08:49 +00:00
/*
void fakeFine(void)
{
int Nk = nbasis;
2018-02-13 02:08:49 +00:00
subspace.resize(Nk,_FineGrid);
subspace[0]=1.0;
subspace[0].checkerboard=_checkerboard;
normalise(subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
2018-02-13 02:08:49 +00:00
subspace[k].checkerboard=_checkerboard;
Op(subspace[k-1],subspace[k]);
normalise(subspace[k]);
}
}
2018-02-13 02:08:49 +00:00
*/
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
2018-02-13 02:08:49 +00:00
assert(subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
2018-02-13 02:08:49 +00:00
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
}
}
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
2018-02-13 02:08:49 +00:00
assert(subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
2018-02-13 02:08:49 +00:00
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,_subspace);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
for(int k=0;k<evec_coarse.size();k++){
2017-10-27 09:43:22 +01:00
if ( k < nbasis ) {
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
} else {
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
}
}
}
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
evals_fine.resize(Nm);
2018-02-13 02:08:49 +00:00
subspace.resize(Nm,_FineGrid);
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
int Nconv;
2018-02-13 02:08:49 +00:00
IRL.calc(evals_fine,subspace,src,Nconv,false);
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
evals_fine.resize(nbasis);
2018-02-13 02:08:49 +00:00
subspace.resize(nbasis,_FineGrid);
}
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
2018-03-01 12:27:29 +00:00
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
2018-03-01 12:27:29 +00:00
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
assert(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
for (int i=0;i<Nstop;i++){
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
};
}
#endif