1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/Hadrons/Modules/MDistil/BContraction.hpp

265 lines
8.6 KiB
C++
Raw Normal View History

#ifndef Hadrons_MDistil_BContraction_hpp_
#define Hadrons_MDistil_BContraction_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
#include <Hadrons/EigenPack.hpp>
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
// These are members of Distillation
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* BContraction *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MDistil)
// general baryon tensor set based on Eigen tensors and Grid-allocated memory
// Dimensions:
// 0 - ext - external field (momentum, EM field, ...)
// 1 - str - spin-color structure
// 2 - t - timeslice
// 3 - i - left distillation mode index
// 4 - j - middle distillation mode index
// 5 - k - left distillation mode index
// template <typename T>
// using BaryonTensorSet = Eigen::TensorMap<Eigen::Tensor<T, 6, Eigen::RowMajor>>;
class BContractionPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(BContractionPar,
std::string, one,
std::string, two,
std::string, three,
std::string, output,
2019-02-08 15:49:52 +00:00
int, parity,
std::vector<std::string>, mom);
};
template <typename FImpl>
class TBContraction: public Module<BContractionPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TBContraction(const std::string name);
// destructor
virtual ~TBContraction(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
bool hasPhase_{false};
std::string momphName_;
std::vector<Gamma::Algebra> gamma12_;
std::vector<Gamma::Algebra> gamma23_;
std::vector<std::vector<Real>> mom_;
protected:
GridCartesian * grid4d;
GridCartesian * grid3d;
};
MODULE_REGISTER_TMP(BContraction, TBContraction<FIMPL>, MDistil);
/******************************************************************************
* TBContraction implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TBContraction<FImpl>::TBContraction(const std::string name)
: Module<BContractionPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TBContraction<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().one, par().two, par().three};
return in;
}
template <typename FImpl>
std::vector<std::string> TBContraction<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TBContraction<FImpl>::setup(void)
{
2019-02-15 15:31:53 +00:00
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TBContraction<FImpl>::execute(void)
{
auto &one = envGet(std::vector<FermionField>, par().one);
auto &two = envGet(std::vector<FermionField>, par().two);
auto &three = envGet(std::vector<FermionField>, par().three);
int N_1 = one.size();
int N_2 = two.size();
int N_3 = three.size();
2019-02-08 15:49:52 +00:00
int parity = par().parity;
LOG(Message) << "Computing distillation baryon fields" << std::endl;
LOG(Message) << "One: '" << par().one << "' Two: '" << par().two << "' Three: '" << par().three << "'" << std::endl;
LOG(Message) << "Momenta:" << std::endl;
for (auto &p: mom_)
{
LOG(Message) << " " << p << std::endl;
}
grid4d = env().getGrid();
grid3d = MakeLowerDimGrid(grid4d);
int Nmom=1;
int Nt=64;
std::vector<Complex> BField(Nmom*Nt*N_1*N_2*N_3);
int Bindex;
int Nc=3; //Num colours
FermionField tmp1(grid3d);
FermionField tmp2(grid3d);
FermionField tmp3(grid3d);
//std::complex<double> * tmp33 = reinterpret_cast<std::complex<double> *>(&(tmp3[0]()(0)(0)));
SpinColourVector * tmp11 = reinterpret_cast<SpinColourVector *>(&(tmp1[0]()(0)(0)));
SpinColourVector * tmp22 = reinterpret_cast<SpinColourVector *>(&(tmp2[0]()(0)(0)));
SpinColourVector * tmp33 = reinterpret_cast<SpinColourVector *>(&(tmp3[0]()(0)(0)));
SpinVector tmp11s;
SpinVector tmp22s;
SpinVector tmp33s;
SpinVector tmp333;
SpinMatrix diquark;
SpinMatrix g_diquark;
SpinVector tmp222;
SpinVector tmp111;
2019-02-08 15:49:52 +00:00
assert(parity == 1 || parity == -1);
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
2019-02-08 15:49:52 +00:00
Gamma g4(Gamma::Algebra::GammaT);
gamma12_ = {
Gamma::Algebra::Identity, // I
Gamma::Algebra::Gamma5, // gamma_5
Gamma::Algebra::Identity, // I
};
gamma23_ = { // C = i gamma_2 gamma_4
Gamma::Algebra::SigmaXZ, // C gamma_5 = -i gamma_1 gamma_3
Gamma::Algebra::SigmaYT, // C = i gamma_2 gamma_4
Gamma::Algebra::GammaYGamma5, // i gamma_4 C gamma_5 = i gamma_2 gamma_5
};
2019-02-15 15:31:53 +00:00
std::vector<Complex> factor23{{0.,-1.},{0.,1.},{0.,1.}};
2019-02-15 14:32:17 +00:00
using BaryonTensorSet = Eigen::Tensor<Complex, 6>;
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
2019-02-15 15:31:53 +00:00
Eigen::Tensor<Complex, 3> corr(Nmom,4,Nt);
2019-02-15 15:51:46 +00:00
//Needs more work - but this is important for contraction
/* int Npairs = 0;
char left[] = "uud";
char right[] = "uud";
std::vector<std::vector<int>> pairs;
for (int il=0, i=0 ; il < 3 ; il++){
for (int ir=0 ; ir < 3 ; ir++){
if (il>ir) continue;
if (left[il] != right[il]) continue;
pairs[i][0]=il;
pairs[i][1]=ir;
i++;
Npairs = i;
}
std::cout << "pairs: " << pairs << std::endl;
}
*/
Complex diquark2;
for (int i1=0 ; i1 < N_1 ; i1++){
for (int i2=0 ; i2 < N_2 ; i2++){
for (int i3=0 ; i3 < N_3 ; i3++){
for (int imom=0 ; imom < Nmom ; imom++){
for (int t=0 ; t < Nt ; t++){
Bindex = i1 + N_1*(i2 + N_2*(i3 + N_3*(imom+Nmom*t)));
ExtractSliceLocal(tmp1,one[i1],0,t,3);
2019-02-08 14:37:09 +00:00
ExtractSliceLocal(tmp2,two[i2],0,t,3);
ExtractSliceLocal(tmp3,three[i3],0,t,3);
parallel_for (unsigned int sU = 0; sU < grid3d->oSites(); ++sU)
{
for (int ie=0 ; ie < 6 ; ie++){
// Why does peekColour not work????
for (int is=0 ; is < 4 ; is++){
tmp11s()(is)() = tmp11[sU]()(is)(epsilon[ie][0]);
tmp22s()(is)() = tmp22[sU]()(is)(epsilon[ie][1]);
tmp33s()(is)() = tmp33[sU]()(is)(epsilon[ie][2]);
}
tmp333 = Gamma(gamma23_[0])*tmp33s;
2019-02-08 15:49:52 +00:00
tmp111 = Gamma(gamma12_[0])*tmp11s;
tmp222 = g4*tmp111;
tmp111 = 0.5*(double)parity*(tmp111 + tmp222); // P_\pm * ...
diquark2 = factor23[0]*innerProduct(tmp22s,tmp333);
for (int is=0 ; is < 4 ; is++){
BField3(imom,is,t,i1,i2,i3)+=(double)epsilon_sgn[ie]*tmp111()(is)()*diquark2;
}
}
}
}
}
}
}
}
for (int is=0 ; is < 4 ; is++){
for (int t=0 ; t < Nt ; t++){
std::cout << "BaryonField(is=" << is << ",t=" << t << ") = " << BField3(0,is,t,0,0,0) << std::endl;
}
}
//Product ijk * ijk
2019-02-15 14:32:17 +00:00
// for ijk * jik: (0,1),(1,0),(2,2) z.b.
Eigen::array<Eigen::IndexPair<int>, 3> product_dims = { Eigen::IndexPair<int>(0,0),Eigen::IndexPair<int>(1,1) ,Eigen::IndexPair<int>(2,2) };
for (int imom=0 ; imom < Nmom ; imom++){
Eigen::Tensor<Complex,5> B5 = BField3.chip(imom,0);
for (int is=0 ; is < 4 ; is++){
Eigen::Tensor<Complex,4> B4 = B5.chip(is,0);
for (int t=0 ; t < Nt ; t++){
Eigen::Tensor<Complex,3> B3 = B4.chip(t,0);
Eigen::Tensor<Complex,0> C2 = B3.contract(B3,product_dims);
corr(imom,is,t) = C2(0);
}
}
}
for (int is=0 ; is < 4 ; is++){
for (int t=0 ; t < Nt ; t++){
std::cout << "C2(is=" << is << ",t=" << t << ") = " << corr(0,is,t) << std::endl;
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_BContraction_hpp_