1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/Grid_Cartesian.h

334 lines
11 KiB
C
Raw Normal View History

2015-03-04 05:33:26 +00:00
#ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H
#include <Grid.h>
#include <Grid_Communicator.h>
2015-03-04 03:12:19 +00:00
namespace dpo{
2015-03-04 05:33:26 +00:00
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support. Following will go into Grid.h.
/////////////////////////////////////////////////////////////////////////////////////////
// Cartesian grids
// dpo::Grid
// dpo::GridCartesian
// dpo::GridCartesianRedBlack
class SimdGrid : public CartesianCommunicator {
2015-03-04 05:33:26 +00:00
public:
SimdGrid(std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
2015-03-04 05:33:26 +00:00
// Give Lattice access
template<class object> friend class Lattice;
//protected:
// Lattice wide random support. not yet fully implemented. Need seed strategy
// and one generator per site.
//std::default_random_engine generator;
2015-03-04 05:33:26 +00:00
// static std::mt19937 generator( 9 );
// Grid information.
// Commicator provides
// unsigned long _ndimension;
// std::vector<int> _processors; // processor grid
// int _processor; // linear processor rank
// std::vector<int> _processor_coor; // linear processor rank
std::vector<int> _simd_layout; // Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// Global dimensions of array prior to cb removal
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
// std::vector<int> _lstart; // local start of array in gcoors. _processor_coor[d]*_ldimensions[d]
// std::vector<int> _lend; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
2015-03-04 05:33:26 +00:00
std::vector<int> _ostride; // Outer stride for each dimension
std::vector<int> _istride; // Inner stride i.e. within simd lane
2015-03-04 05:33:26 +00:00
int _osites; // _isites*_osites = product(dimensions).
int _isites;
// subslice information
std::vector<int> _slice_block;
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
public:
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
inline int oIndexReduced(std::vector<int> &rcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*rcoor[d];
return idx;
}
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
inline int iIndex(std::vector<int> &rcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(rcoor[d]/_rdimensions[d]);
return idx;
}
inline int iCoordFromIsite(int lane,int mu)
{
std::vector<int> coor(_ndimension);
for(int d=0;d<_ndimension;d++){
coor[d] = lane % _simd_layout[d];
lane = lane / _simd_layout[d];
}
return coor[mu];
}
2015-03-04 05:33:26 +00:00
inline int oSites(void) { return _osites; };
inline int iSites(void) { return _isites; };
inline int CheckerBoardFromOsite (int Osite){
std::vector<int> ocoor;
CoordFromOsite(ocoor,Osite);
int ss=0;
for(int d=0;d<_ndimension;d++){
ss=ss+ocoor[d];
}
return ss&0x1;
}
inline void CoordFromOsite (std::vector<int>& coor,int Osite){
coor.resize(_ndimension);
for(int d=0;d<_ndimension;d++){
coor[d] = Osite % _rdimensions[d];
Osite = Osite / _rdimensions[d];
}
}
virtual int CheckerBoarded(int dim)=0;
2015-03-04 05:33:26 +00:00
virtual int CheckerBoard(std::vector<int> site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
2015-03-04 05:33:26 +00:00
};
class GridCartesian: public SimdGrid {
2015-03-04 03:12:19 +00:00
public:
virtual int CheckerBoarded(int dim){
return 0;
}
2015-03-04 03:12:19 +00:00
virtual int CheckerBoard(std::vector<int> site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift){
return 0;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
2015-03-04 03:12:19 +00:00
return shift;
}
GridCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid
) : SimdGrid(processor_grid)
2015-03-04 03:12:19 +00:00
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
2015-03-04 03:12:19 +00:00
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
2015-03-04 03:12:19 +00:00
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_osites = 1;
_isites = 1;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
//FIXME check for exact division
// Use a reduced simd grid
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
2015-03-04 03:12:19 +00:00
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
2015-03-04 03:12:19 +00:00
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
if ( _isites != vComplex::Nsimd()) {
printf("bad layout for grid isites %d Nsimd %d\n",_isites,vComplex::Nsimd());
exit(0);
}
};
};
2015-03-04 03:12:19 +00:00
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public SimdGrid
2015-03-04 03:12:19 +00:00
{
public:
virtual int CheckerBoarded(int dim){
if( dim==0) return 1;
else return 0;
}
2015-03-04 03:12:19 +00:00
virtual int CheckerBoard(std::vector<int> site){
return (site[0]+site[1]+site[2]+site[3])&0x1;
2015-03-04 03:12:19 +00:00
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != 0) return shift;
int fulldim =_fdimensions[0];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
int ocb=CheckerBoardFromOsite(osite);
if ( (source_cb+ocb)&1 ) {
printf("Checkerboard shift %d\n",(shift)/2);
return (shift)/2;
} else {
printf("Checkerboard shift %d\n",(shift+1)/2);
return (shift+1)/2;
}
2015-03-04 03:12:19 +00:00
}
2015-03-04 03:12:19 +00:00
virtual int CheckerBoardDestination(int source_cb,int shift){
if ((shift+_fdimensions[0])&0x1) {
2015-03-04 03:12:19 +00:00
return 1-source_cb;
} else {
return source_cb;
}
};
GridRedBlackCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid) : SimdGrid(processor_grid)
2015-03-04 03:12:19 +00:00
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
2015-03-04 03:12:19 +00:00
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
2015-03-04 03:12:19 +00:00
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_osites = 1;
_isites = 1;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
if (d==0) _gdimensions[0] = _gdimensions[0]/2; // Remove a checkerboard
_ldimensions[d] = _gdimensions[d]/_processors[d];
2015-03-04 03:12:19 +00:00
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
2015-03-04 03:12:19 +00:00
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
2015-03-04 03:12:19 +00:00
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
2015-03-04 03:12:19 +00:00
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
// It may be worth the investment of generating a more general subplane "iterator",
// and providing support for threads grabbing a unit of allocation.
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
if ( _isites != vComplex::Nsimd()) {
printf("bad layout for grid isites %d Nsimd %d\n",_isites,vComplex::Nsimd());
exit(0);
}
};
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx=_ostride[0]*((coor[0]/2)%_rdimensions[0]);
for(int d=1;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
};
};
}
2015-03-04 05:33:26 +00:00
#endif