1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 17:55:38 +00:00
Grid/lib/qcd/utils/SUn.h

415 lines
12 KiB
C
Raw Normal View History

#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
namespace Grid {
namespace QCD {
template<int ncolour>
class SU {
public:
static int generators(void) { return ncolour*ncolour-1; }
static int su2subgroups(void) { return (ncolour*(ncolour-1))/2; }
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iSUnMatrix<vComplex> vMatrix;
typedef iSUnMatrix<vComplexF> vMatrixF;
typedef iSUnMatrix<vComplexD> vMatrixD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
////////////////////////////////////////////////////////////////////////
template<class cplx>
static void generator(int lieIndex,iSUnMatrix<cplx> &ta){
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour*(ncolour-1);
if ( lieIndex>= NNm1 ) {
diagIndex = lieIndex -NNm1;
generatorDiagonal(diagIndex,ta);
return;
}
sigxy = lieIndex&0x1;
su2Index= lieIndex>>1;
if ( sigxy ) generatorSigmaY(su2Index,ta);
else generatorSigmaX(su2Index,ta);
}
template<class cplx>
static void generatorSigmaX(int su2Index,iSUnMatrix<cplx> &ta){
ta=zero;
int i1,i2;
su2SubGroupIndex(i1,i2,su2Index);
ta()()(i1,i2)=1.0;
ta()()(i2,i1)=1.0;
ta= ta *0.5;
}
template<class cplx>
static void generatorSigmaY(int su2Index,iSUnMatrix<cplx> &ta){
ta=zero;
cplx i(0.0,1.0);
int i1,i2;
su2SubGroupIndex(i1,i2,su2Index);
ta()()(i1,i2)=-i;
ta()()(i2,i1)= i;
ta= ta *0.5;
}
template<class cplx>
static void generatorDiagonal(int diagIndex,iSUnMatrix<cplx> &ta){
ta=zero;
int trsq=0;
int last=diagIndex+1;
for(int i=0;i<=diagIndex;i++){
ta()()(i,i) = 1.0;
trsq++;
}
ta()()(last,last) = -last;
trsq+=last*last;
RealD nrm = 1.0/std::sqrt(2.0*trsq);
ta = ta *nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
assert( (su2_index>=0) && (su2_index< (ncolour*(ncolour-1))/2) );
int spare=su2_index;
for(i1=0;spare >= (ncolour-1-i1);i1++ ){
spare = spare - (ncolour-1-i1); // remove the Nc-1-i1 terms
}
i2=i1+1+spare;
}
template<class vreal,class vcplx>
static void su2Extract(std::vector<Lattice<iSinglet <vreal> > > &r,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index)
{
GridBase *grid(source._grid);
assert(r.size() == 4); // store in 4 real parts
for(int i=0;i<4;i++){
conformable(r[i],source);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
// r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
// r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
// r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
// r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
}
template<class vreal,class vcplx>
static void su2Insert(const std::vector<Lattice<iSinglet<vreal> > > &r,
Lattice<iSUnMatrix<vcplx> > &dest,
int su2_index)
{
typedef typename Lattice<iSUnMatrix<vcplx> >::scalar_type cplx;
typedef Lattice<iSinglet<vcplx> > Lcomplex;
GridBase * grid = dest._grid;
assert(r.size() == 4); // store in 4 real parts
Lcomplex tmp(grid);
std::vector<Lcomplex > cr(4,grid);
for(int i=0;i<r.size();i++){
conformable(r[i],dest);
cr[i]=toComplex(r[i]);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
cplx one (1.0,0.0);
cplx cplx_i(0.0,1.0);
tmp = cr[0]*one+ cr[3]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = -cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i2,i1);
tmp = cr[0]*one- cr[3]*cplx_i; pokeColour(dest,tmp,i2,i2);
}
static void SubGroupHeatBath( GridSerialRNG &sRNG,
GridParallelRNG &pRNG,
RealD beta,
LatticeMatrix &link,
const LatticeMatrix &staple,
int su2_subgroup,
int nheatbath,
int& ntrials,
int& nfails,
LatticeInteger &wheremask)
{
GridBase *grid = link._grid;
LatticeMatrix V(grid);
V = link*staple;
std::vector<LatticeReal> r(4,grid);
std::vector<LatticeReal> a(4,grid);
su2Extract(r,V,su2_subgroup); // HERE
LatticeReal r_l(grid);
r_l = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]+r[3]*r[3];
r_l = sqrt(r_l);
LatticeReal ftmp(grid);
LatticeReal ftmp1(grid);
LatticeReal ftmp2(grid);
LatticeReal one (grid); one = 1.0;
LatticeReal zz (grid); zz = zero;
LatticeReal recip(grid); recip = one/r_l;
Real machine_epsilon= 1.0e-14;
ftmp = where(r_l>machine_epsilon,recip,one);
a[0] = where(r_l>machine_epsilon, r[0] * ftmp , one);
a[1] = where(r_l>machine_epsilon, -(r[1] * ftmp), zz);
a[2] = where(r_l>machine_epsilon, -(r[2] * ftmp), zz);
a[3] = where(r_l>machine_epsilon, -(r[3] * ftmp), zz);
r_l *= beta / ncolour;
ftmp1 = where(wheremask,one,zz);
Real num_sites = TensorRemove(sum(ftmp1));
Integer itrials = (Integer)num_sites;
ntrials = 0;
nfails = 0;
LatticeInteger lupdate(grid);
LatticeInteger lbtmp(grid);
LatticeInteger lbtmp2(grid); lbtmp2=zero;
int n_done = 0;
int nhb = 0;
r[0] = a[0];
lupdate = 1;
LatticeReal ones (grid); ones = 1.0;
LatticeReal zeros(grid); zeros=zero;
const RealD twopi=2.0*M_PI;
while ( nhb < nheatbath && n_done < num_sites ) {
ntrials += itrials;
random(pRNG,r[1]);
std::cout<<"RANDOM SPARSE FLOAT r[1]"<<std::endl;
std::cout<<r[1]<<std::endl;
random(pRNG,r[2]);
random(pRNG,ftmp);
r[1] = log(r[1]);
r[2] = log(r[2]);
ftmp = ftmp*twopi;
r[3] = cos(ftmp);
r[3] = r[3]*r[3];
r[1] += r[2] * r[3];
r[2] = r[1] / r_l;
random(pRNG,ftmp);
r[1] = ftmp*ftmp;
{
LatticeInteger mask_true (grid); mask_true = 1;
LatticeInteger mask_false(grid); mask_false= 0;
LatticeReal thresh(grid); thresh = (1.0 + 0.5*r[2]);
lbtmp = where(r[1] <= thresh,mask_true,mask_false);
}
lbtmp2= lbtmp && lupdate;
r[0] = where(lbtmp2, 1.0+r[2], r[0]);
ftmp1 = where(lbtmp2,ones,zeros);
RealD sitesum = sum(ftmp1);
Integer itmp = sitesum;
n_done += itmp;
itrials -= itmp;
nfails += itrials;
lbtmp = !lbtmp;
lupdate = lupdate & lbtmp;
++nhb;
}
// Now create r[1], r[2] and r[3] according to the spherical measure
// Take absolute value to guard against round-off
random(pRNG,ftmp1);
r[2] = 1.0 - 2.0*ftmp1;
ftmp1 = abs(1.0 - r[0]*r[0]);
r[3] = -(sqrt(ftmp1) * r[2]);
// Take absolute value to guard against round-off
r_l = sqrt(abs(ftmp1 - r[3]*r[3]));
random(pRNG,ftmp1);
ftmp1 *= twopi;
r[1] = r_l * cos(ftmp1);
r[2] = r_l * sin(ftmp1);
// Update matrix is B = R * A, with B, R and A given by b_i, r_i and a_i
std::vector<LatticeReal> b(4,grid);
b[0] = r[0]*a[0] - r[1]*a[1] - r[2]*a[2] - r[3]*a[3];
b[1] = r[0]*a[1] + r[1]*a[0] - r[2]*a[3] + r[3]*a[2];
b[2] = r[0]*a[2] + r[2]*a[0] - r[3]*a[1] + r[1]*a[3];
b[3] = r[0]*a[3] + r[3]*a[0] - r[1]*a[2] + r[2]*a[1];
//
// Now fill an SU(3) matrix V with the SU(2) submatrix su2_index
// parametrized by a_k in the sigma matrix basis.
//
su2Insert(b,V,su2_subgroup);
// U = V*U
LatticeMatrix tmp(grid);
tmp = V * link;
//mask the assignment back
link = where(wheremask,tmp,link);
}
static void printGenerators(void)
{
for(int gen=0;gen<generators();gen++){
Matrix ta;
generator(gen,ta);
std::cout<< "Nc = "<<ncolour<<" t_"<<gen<<std::endl;
std::cout<<ta<<std::endl;
}
}
static void testGenerators(void){
Matrix ta;
Matrix tb;
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
for(int a=0;a<generators();a++){
for(int b=0;b<generators();b++){
generator(a,ta);
generator(b,tb);
Complex tr =TensorRemove(trace(ta*tb));
std::cout<<tr<<" ";
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
if(a!=b) assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
std::cout<<"Checking hermitian"<<std::endl;
for(int a=0;a<generators();a++){
generator(a,ta);
std::cout<<a<<" ";
assert(norm2(ta-adj(ta))<1.0e-6);
}
std::cout<<std::endl;
std::cout<<"Checking traceless"<<std::endl;
for(int a=0;a<generators();a++){
generator(a,ta);
Complex tr =TensorRemove(trace(ta));
std::cout<<a<<" ";
assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
// reunitarise??
static void taProj( const LatticeMatrix &in, LatticeMatrix &out){
out = Ta(in);
}
static void taExp( const LatticeMatrix &x, LatticeMatrix &ex){
LatticeMatrix xn = x;
RealD nfac = 1.0;
ex = 1+x; // 1+x
// Do a 12th order exponentiation
for(int i= 2; i <= 12; ++i)
{
nfac = nfac/i;
xn = xn * x; // x2, x3,x4....
ex += xn*nfac;// x2/2!, x3/3!....
}
}
};
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
}
}
#endif