1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/cartesian/Cartesian_base.h

290 lines
12 KiB
C
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_base.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
2015-04-18 18:36:48 +01:00
#ifndef GRID_CARTESIAN_BASE_H
#define GRID_CARTESIAN_BASE_H
namespace Grid{
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// std::vector<int> _processors; // processor grid
// int _processor; // linear processor rank
// std::vector<int> _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
2015-04-18 18:36:48 +01:00
public:
2017-10-30 00:04:14 +00:00
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
2017-06-22 08:14:34 +01:00
GridBase(const std::vector<int> & processor_grid,
2017-10-30 00:04:14 +00:00
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {};
GridBase(const std::vector<int> & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {};
virtual ~GridBase() = default;
2015-04-18 18:36:48 +01:00
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
2017-02-07 06:21:32 +00:00
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
2015-04-18 18:36:48 +01:00
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
std::vector<int> _ostride; // Outer stride for each dimension
std::vector<int> _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
2017-06-11 23:14:10 +01:00
std::vector<int> _slice_block;// subslice information
2015-04-18 18:36:48 +01:00
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
2017-06-11 23:14:10 +01:00
std::vector<int> _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
std::vector<int> _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
2015-04-18 18:36:48 +01:00
public:
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const std::vector<int> &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
2015-04-18 18:36:48 +01:00
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
2015-04-18 18:36:48 +01:00
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
// Works with either global or local coordinates
2015-04-18 18:36:48 +01:00
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(std::vector<int> &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
2015-04-18 18:36:48 +01:00
inline int oIndexReduced(std::vector<int> &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
2015-04-18 18:36:48 +01:00
}
inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
}
2015-04-18 18:36:48 +01:00
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
{
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
2015-04-18 18:36:48 +01:00
}
2015-04-18 18:36:48 +01:00
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
//
// FIXME:
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
// a permute.
//
// Cases: PermuteType == 1,2,4,8
// Distance should be either 0,1,2..
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
}
2015-04-18 18:36:48 +01:00
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
2015-04-18 18:36:48 +01:00
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
inline int iSites(void) const { return _isites; };
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
2017-06-11 23:14:10 +01:00
inline const std::vector<int> LocalStarts(void) { return _lstart; };
2015-04-18 18:36:48 +01:00
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
2015-04-18 18:36:48 +01:00
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
2017-04-01 16:27:28 +01:00
assert(gidx< gSites());
2016-02-11 13:37:39 +00:00
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
2017-04-01 16:27:28 +01:00
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
gidx+=mult*gcoor[mu];
mult*=_gdimensions[mu];
}
}
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
int _fld = _fdimensions[mu]/_processors[mu];
pcoor[mu] = gcoor[mu]/_fld;
lcoor[mu] = gcoor[mu]%_fld;
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
{
std::vector<int> pcoor;
std::vector<int> lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
2017-02-07 06:21:32 +00:00
/*
std::vector<int> cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
}
}
2017-02-07 06:21:32 +00:00
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
2015-04-18 18:36:48 +01:00
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
std::vector<int> coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
2015-04-18 18:36:48 +01:00
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
2015-04-18 18:36:48 +01:00
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
2015-04-18 18:36:48 +01:00
}
}
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
};
2015-04-18 18:36:48 +01:00
}
#endif