1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/extras/Hadrons/Graph.hpp

760 lines
18 KiB
C++
Raw Normal View History

2016-12-15 18:26:39 +00:00
/*************************************************************************************
2016-02-25 12:07:21 +00:00
Grid physics library, www.github.com/paboyle/Grid
2016-12-15 18:26:39 +00:00
Source file: extras/Hadrons/Graph.hpp
2016-02-25 12:07:21 +00:00
2017-12-26 13:16:47 +00:00
Copyright (C) 2015-2018
2016-02-25 12:07:21 +00:00
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2016-12-15 18:26:39 +00:00
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
2016-12-15 18:21:52 +00:00
/* END LEGAL */
#ifndef Hadrons_Graph_hpp_
#define Hadrons_Graph_hpp_
2016-11-28 07:02:15 +00:00
#include <Grid/Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Oriented graph class *
******************************************************************************/
// I/O for edges
template <typename T>
std::ostream & operator<<(std::ostream &out, const std::pair<T, T> &e)
{
out << "\"" << e.first << "\" -> \"" << e.second << "\"";
return out;
}
// main class
template <typename T>
class Graph
{
public:
typedef std::pair<T, T> Edge;
public:
// constructor
Graph(void);
// destructor
virtual ~Graph(void) = default;
// access
void addVertex(const T &value);
void addEdge(const Edge &e);
void addEdge(const T &start, const T &end);
std::vector<T> getVertices(void) const;
void removeVertex(const T &value);
void removeEdge(const Edge &e);
void removeEdge(const T &start, const T &end);
unsigned int size(void) const;
// tests
bool gotValue(const T &value) const;
// graph topological manipulations
std::vector<T> getAdjacentVertices(const T &value) const;
std::vector<T> getChildren(const T &value) const;
std::vector<T> getParents(const T &value) const;
std::vector<T> getRoots(void) const;
std::vector<Graph<T>> getConnectedComponents(void) const;
std::vector<T> topoSort(void);
template <typename Gen>
std::vector<T> topoSort(Gen &gen);
std::vector<std::vector<T>> allTopoSort(void);
// I/O
friend std::ostream & operator<<(std::ostream &out, const Graph<T> &g)
{
out << "{";
for (auto &e: g.edgeSet_)
{
out << e << ", ";
}
if (g.edgeSet_.size() != 0)
{
out << "\b\b";
}
out << "}";
return out;
}
2015-12-02 19:33:34 +00:00
private:
// vertex marking
2015-12-02 19:33:34 +00:00
void mark(const T &value, const bool doMark = true);
void markAll(const bool doMark = true);
void unmark(const T &value);
void unmarkAll(void);
bool isMarked(const T &value) const;
const T * getFirstMarked(const bool isMarked = true) const;
template <typename Gen>
const T * getRandomMarked(const bool isMarked, Gen &gen);
2015-12-02 19:33:34 +00:00
const T * getFirstUnmarked(void) const;
template <typename Gen>
const T * getRandomUnmarked(Gen &gen);
// prune marked/unmarked vertices
2015-12-02 19:33:34 +00:00
void removeMarked(const bool isMarked = true);
void removeUnmarked(void);
// depth-first search marking
void depthFirstSearch(void);
void depthFirstSearch(const T &root);
private:
std::map<T, bool> isMarked_;
std::set<Edge> edgeSet_;
};
// build depedency matrix from topological sorts
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort);
/******************************************************************************
* template implementation *
******************************************************************************
* in all the following V is the number of vertex and E is the number of edge
* in the worst case E = V^2
*/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
Graph<T>::Graph(void)
{}
// access //////////////////////////////////////////////////////////////////////
// complexity: log(V)
template <typename T>
void Graph<T>::addVertex(const T &value)
{
isMarked_[value] = false;
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const Edge &e)
{
addVertex(e.first);
addVertex(e.second);
edgeSet_.insert(e);
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const T &start, const T &end)
{
addEdge(Edge(start, end));
}
template <typename T>
std::vector<T> Graph<T>::getVertices(void) const
{
std::vector<T> vertex;
for (auto &v: isMarked_)
{
vertex.push_back(v.first);
}
return vertex;
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::removeVertex(const T &value)
{
// remove vertex from the mark table
auto vIt = isMarked_.find(value);
if (vIt != isMarked_.end())
{
isMarked_.erase(vIt);
}
else
{
HADRON_ERROR(Range, "vertex does not exists");
}
// remove all edges containing the vertex
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const Edge &e)
{
auto eIt = edgeSet_.find(e);
if (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
}
else
{
HADRON_ERROR(Range, "edge does not exists");
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const T &start, const T &end)
{
removeEdge(Edge(start, end));
}
// complexity: O(1)
2015-12-02 19:33:34 +00:00
template <typename T>
unsigned int Graph<T>::size(void) const
{
return isMarked_.size();
}
// tests ///////////////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
bool Graph<T>::gotValue(const T &value) const
{
auto it = isMarked_.find(value);
if (it == isMarked_.end())
{
return false;
}
else
{
return true;
}
}
// vertex marking //////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
void Graph<T>::mark(const T &value, const bool doMark)
{
if (gotValue(value))
{
isMarked_[value] = doMark;
}
else
{
HADRON_ERROR(Range, "vertex does not exists");
}
}
// complexity: O(V*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
void Graph<T>::markAll(const bool doMark)
{
for (auto &v: isMarked_)
{
mark(v.first, doMark);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::unmark(const T &value)
{
mark(value, false);
}
// complexity: O(V*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
void Graph<T>::unmarkAll(void)
{
markAll(false);
}
// complexity: O(log(V))
template <typename T>
bool Graph<T>::isMarked(const T &value) const
{
if (gotValue(value))
{
return isMarked_.at(value);
}
else
{
HADRON_ERROR(Range, "vertex does not exists");
return false;
}
}
// complexity: O(log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
const T * Graph<T>::getFirstMarked(const bool isMarked) const
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
auto vIt = std::find_if(isMarked_.begin(), isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomMarked(const bool isMarked, Gen &gen)
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
std::uniform_int_distribution<unsigned int> dis(0, size() - 1);
auto rIt = isMarked_.begin();
std::advance(rIt, dis(gen));
auto vIt = std::find_if(rIt, isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
vIt = std::find_if(isMarked_.begin(), rIt, pred);
if (vIt != rIt)
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
}
// complexity: O(log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
const T * Graph<T>::getFirstUnmarked(void) const
{
return getFirstMarked(false);
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomUnmarked(Gen &gen)
{
return getRandomMarked(false, gen);
}
// prune marked/unmarked vertices //////////////////////////////////////////////
// complexity: O(V^2*log(V))
template <typename T>
2015-12-02 19:33:34 +00:00
void Graph<T>::removeMarked(const bool isMarked)
{
auto isMarkedCopy = isMarked_;
for (auto &v: isMarkedCopy)
{
if (v.second == isMarked)
{
removeVertex(v.first);
}
}
}
// complexity: O(V^2*log(V))
template <typename T>
2015-12-02 19:33:34 +00:00
void Graph<T>::removeUnmarked(void)
{
2015-12-02 19:33:34 +00:00
removeMarked(false);
}
// depth-first search marking //////////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(void)
{
depthFirstSearch(isMarked_.begin()->first);
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(const T &root)
{
std::vector<T> adjacentVertex;
mark(root);
adjacentVertex = getAdjacentVertices(root);
for (auto &v: adjacentVertex)
{
if (!isMarked(v))
{
depthFirstSearch(v);
}
}
}
// graph topological manipulations /////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getAdjacentVertices(const T &value) const
{
std::vector<T> adjacentVertex;
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
if (eIt->first == value)
{
adjacentVertex.push_back((*eIt).second);
}
else if (eIt->second == value)
{
adjacentVertex.push_back((*eIt).first);
}
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return adjacentVertex;
}
// complexity: O(V*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
std::vector<T> Graph<T>::getChildren(const T &value) const
{
std::vector<T> child;
auto pred = [&value](const Edge &e)
{
return (e.first == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
2015-12-02 19:33:34 +00:00
while (eIt != edgeSet_.end())
{
child.push_back((*eIt).second);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
2015-12-02 19:33:34 +00:00
}
return child;
}
// complexity: O(V*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
std::vector<T> Graph<T>::getParents(const T &value) const
{
std::vector<T> parent;
auto pred = [&value](const Edge &e)
{
return (e.second == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
2015-12-02 19:33:34 +00:00
while (eIt != edgeSet_.end())
{
parent.push_back((*eIt).first);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
2015-12-02 19:33:34 +00:00
}
return parent;
}
// complexity: O(V^2*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
std::vector<T> Graph<T>::getRoots(void) const
{
std::vector<T> root;
for (auto &v: isMarked_)
{
auto parent = getParents(v.first);
if (parent.size() == 0)
{
root.push_back(v.first);
}
}
return root;
}
// complexity: O(V^2*log(V))
template <typename T>
std::vector<Graph<T>> Graph<T>::getConnectedComponents(void) const
{
2015-12-02 19:33:34 +00:00
std::vector<Graph<T>> res;
Graph<T> copy(*this);
while (copy.size() > 0)
{
copy.depthFirstSearch();
res.push_back(copy);
res.back().removeUnmarked();
res.back().unmarkAll();
copy.removeMarked();
copy.unmarkAll();
}
return res;
}
// topological sort using a directed DFS algorithm
// complexity: O(V*log(V))
2015-12-02 19:33:34 +00:00
template <typename T>
std::vector<T> Graph<T>::topoSort(void)
2015-12-02 19:33:34 +00:00
{
std::stack<T> buf;
std::vector<T> res;
2015-12-02 19:33:34 +00:00
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
2015-12-02 19:33:34 +00:00
// visit function
std::function<void(const T &)> visit = [&](const T &v)
{
if (tmpMarked.at(v))
{
HADRON_ERROR(Range, "cannot topologically sort a cyclic graph");
2015-12-02 19:33:34 +00:00
}
if (!isMarked(v))
2015-12-02 19:33:34 +00:00
{
std::vector<T> child = getChildren(v);
2015-12-02 19:33:34 +00:00
tmpMarked[v] = true;
for (auto &c: child)
{
visit(c);
}
mark(v);
2015-12-02 19:33:34 +00:00
tmpMarked[v] = false;
buf.push(v);
2015-12-02 19:33:34 +00:00
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
2015-12-02 19:33:34 +00:00
// loop on unmarked vertices
unmarkAll();
vPt = getFirstUnmarked();
while (vPt)
{
visit(*vPt);
vPt = getFirstUnmarked();
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// random version of the topological sort
// complexity: O(V*log(V))
template <typename T>
template <typename Gen>
std::vector<T> Graph<T>::topoSort(Gen &gen)
{
std::stack<T> buf;
std::vector<T> res;
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
// visit function
std::function<void(const T &)> visit = [&](const T &v)
2015-12-02 19:33:34 +00:00
{
if (tmpMarked.at(v))
{
HADRON_ERROR(Range, "cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
std::vector<T> child = getChildren(v);
tmpMarked[v] = true;
std::shuffle(child.begin(), child.end(), gen);
for (auto &c: child)
{
visit(c);
}
mark(v);
tmpMarked[v] = false;
buf.push(v);
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
// loop on unmarked vertices
unmarkAll();
vPt = getRandomUnmarked(gen);
while (vPt)
{
visit(*vPt);
vPt = getRandomUnmarked(gen);
2015-12-02 19:33:34 +00:00
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// generate all possible topological sorts
// Y. L. Varol & D. Rotem, Comput. J. 24(1), pp. 8384, 1981
// http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/24.1.83
// complexity: O(V*log(V)) (from the paper, but really ?)
template <typename T>
std::vector<std::vector<T>> Graph<T>::allTopoSort(void)
{
std::vector<std::vector<T>> res;
std::map<T, std::map<T, bool>> iMat;
// create incidence matrix
for (auto &v1: isMarked_)
for (auto &v2: isMarked_)
{
iMat[v1.first][v2.first] = false;
}
for (auto &v: isMarked_)
{
auto cVec = getChildren(v.first);
for (auto &c: cVec)
{
iMat[v.first][c] = true;
}
}
// generate initial topological sort
res.push_back(topoSort());
// generate all other topological sorts by permutation
std::vector<T> p = res[0];
const unsigned int n = size();
std::vector<unsigned int> loc(n);
unsigned int i, k, k1;
T obj_k, obj_k1;
bool isFinal;
for (unsigned int j = 0; j < n; ++j)
{
loc[j] = j;
}
i = 0;
while (i < n-1)
{
k = loc[i];
k1 = k + 1;
obj_k = p[k];
if (k1 >= n)
{
isFinal = true;
obj_k1 = obj_k;
}
else
{
isFinal = false;
obj_k1 = p[k1];
}
if (iMat[res[0][i]][obj_k1] or isFinal)
{
for (unsigned int l = k; l >= i + 1; --l)
{
p[l] = p[l-1];
}
p[i] = obj_k;
loc[i] = i;
i++;
}
else
{
p[k] = obj_k1;
p[k1] = obj_k;
loc[i] = k1;
i = 0;
res.push_back(p);
}
}
2015-12-02 19:33:34 +00:00
return res;
}
// build depedency matrix from topological sorts ///////////////////////////////
2016-05-12 12:49:49 +01:00
// complexity: something like O(V^2*log(V!))
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort)
{
std::map<T, std::map<T, bool>> m;
const std::vector<T> &vList = topSort[0];
for (auto &v1: vList)
for (auto &v2: vList)
{
bool dep = true;
for (auto &t: topSort)
{
auto i1 = std::find(t.begin(), t.end(), v1);
auto i2 = std::find(t.begin(), t.end(), v2);
dep = dep and (i1 - i2 > 0);
if (!dep) break;
}
m[v1][v2] = dep;
}
return m;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Graph_hpp_