1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/forces/Test_mobius_force_eofa.cc

217 lines
7.3 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
LatticeFermion Mphi (FGrid);
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD b = 2.5;
RealD c = 1.5;
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
2022-11-16 03:58:30 +00:00
MobiusEOFAFermionD Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
2019-07-16 11:59:56 +01:00
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds4);
Imported changes from feature/gparity_HMC branch: Added a bounds-check function for the RHMC with arbitrary power Added a pseudofermion action for the rational ratio with an arbitrary power and a mixed-precision variant of the same. The existing one-flavor rational ratio class now uses the general class under the hood To support testing of the two-flavor even-odd ratio pseudofermion, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field Added a new HMC runner start type: CheckpointStartReseed, which reseeds the RNG from scratch, allowing for the creation of new evolution streams from an existing checkpoint. Added log output of seeds used when the RNG is seeded. EOFA changes: To support mixed-precision inversion, generalized the class to maintain a separate solver for the L and R operators in the heatbath (separate solvers are already implemented for the other stages) To support mixed-precision, the action of setting the operator shift coefficients is now maintained in a virtual function. A derived class for mixed-precision solvers ensures the coefficients are applied to both the double and single-prec operators The ||^2 of the random source is now stored by the heatbath and compared to the initial action when it is computed. These should be equal but may differ if the rational bounds are not chosen correctly, hence serving as a useful and free test Fixed calculation of M_eofa (previously incomplete and #if'd out) Added functionality to compute M_eofa^-1 to complement the calculation of M_eofa (both are equally expensive!) To support testing, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field Added a test program which computes the G-parity force using the 1 and 2 flavor implementations and compares the result. Test supports DWF, EOFA and DSDR actions, chosen by a command line option. The Mobius EOFA force test now also checks the rational approximation used for the heatbath Added a test program for the mixed precision EOFA compared to the double-prec implementation, G-parity HMC test now applied GPBC in the y direction and not the t direction (GPBC in t are no longer supported) and checkpoints after every configuration Added a test program which computes the two-flavor G-parity action (via RHMC) with both the 1 and 2 flavor implementations and checks they agree Added a test program to check the implementation of M_eofa^{-1}
2022-06-22 15:27:48 +01:00
//Check the rational approximation
{
RealD scale = std::sqrt(0.5);
LatticeFermion eta (Lop.FermionGrid());
gaussian(RNG5,eta); eta = eta * scale;
Meofa.refresh(U, eta);
//Phi = M^{-1/2} eta
//M is Hermitian
//(Phi, M Phi) = eta^\dagger M^{-1/2} M M^{-1/2} eta = eta^\dagger eta
LatticeFermion phi = Meofa.getPhi();
LatticeFermion Mphi(FGrid);
Meofa.Meofa(U, phi, Mphi);
std::cout << "Computing inner product" << std::endl;
ComplexD inner = innerProduct(phi, Mphi);
ComplexD test = inner - norm2(eta);
std::cout << "(phi, Mphi) - (eta,eta): " << test << " expect 0" << std::endl;
assert(test.real() < 1e-8);
assert(test.imag() < 1e-8);
//Another test is to use heatbath twice to apply M^{-1/2} to Phi then apply M
// M Phi'
//= M M^{-1/2} Phi
//= M M^{-1/2} M^{-1/2} eta
//= eta
Meofa.refresh(U, phi);
LatticeFermion phi2 = Meofa.getPhi();
LatticeFermion test2(FGrid);
Meofa.Meofa(U, phi2, test2);
test2 = test2 - eta;
RealD test2_norm = norm2(test2);
std::cout << "|M M^{-1/2} M^{-1/2} eta - eta|^2 = " << test2_norm << " expect 0" << std::endl;
assert( test2_norm < 1e-8 );
}
Meofa.refresh(U, sRNG, RNG5 );
Imported changes from feature/gparity_HMC branch: Added a bounds-check function for the RHMC with arbitrary power Added a pseudofermion action for the rational ratio with an arbitrary power and a mixed-precision variant of the same. The existing one-flavor rational ratio class now uses the general class under the hood To support testing of the two-flavor even-odd ratio pseudofermion, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field Added a new HMC runner start type: CheckpointStartReseed, which reseeds the RNG from scratch, allowing for the creation of new evolution streams from an existing checkpoint. Added log output of seeds used when the RNG is seeded. EOFA changes: To support mixed-precision inversion, generalized the class to maintain a separate solver for the L and R operators in the heatbath (separate solvers are already implemented for the other stages) To support mixed-precision, the action of setting the operator shift coefficients is now maintained in a virtual function. A derived class for mixed-precision solvers ensures the coefficients are applied to both the double and single-prec operators The ||^2 of the random source is now stored by the heatbath and compared to the initial action when it is computed. These should be equal but may differ if the rational bounds are not chosen correctly, hence serving as a useful and free test Fixed calculation of M_eofa (previously incomplete and #if'd out) Added functionality to compute M_eofa^-1 to complement the calculation of M_eofa (both are equally expensive!) To support testing, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field Added a test program which computes the G-parity force using the 1 and 2 flavor implementations and compares the result. Test supports DWF, EOFA and DSDR actions, chosen by a command line option. The Mobius EOFA force test now also checks the rational approximation used for the heatbath Added a test program for the mixed precision EOFA compared to the double-prec implementation, G-parity HMC test now applied GPBC in the y direction and not the t direction (GPBC in t are no longer supported) and checkpoints after every configuration Added a test program which computes the two-flavor G-parity action (via RHMC) with both the 1 and 2 flavor implementations and checks they agree Added a test program to check the implementation of M_eofa^{-1}
2022-06-22 15:27:48 +01:00
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
autoView( mom_v, mom, CpuRead);
autoView( U_v , U, CpuRead);
autoView(Uprime_v, Uprime, CpuWrite);
thread_foreach(i,mom_v,{
Uprime_v[i](mu) = U_v[i](mu)
+ mom_v[i](mu)*U_v[i](mu)*dt
+ mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt/2.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt/6.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt/24.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt*dt/720.0)
;
});
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
2018-01-27 23:46:02 +00:00
dS = Zero();
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}