1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/communicator/Communicator_mpit.cc

260 lines
8.0 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/ActionCore.h>
#include <mpi.h>
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Comm CartesianCommunicator::communicator_world;
// Should error check all MPI calls.
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
int provided;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
if ( provided != MPI_THREAD_MULTIPLE ) {
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
}
}
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
ShmInitGeneric();
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
int myrank = _processor;
int ierr;
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
}
///////////////////////////////////////////////////////
// Should only be used prior to Grid Init finished.
// Check for this?
///////////////////////////////////////////////////////
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator_world);
assert(ierr==0);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir)
{
2017-08-25 09:25:54 +01:00
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
list.push_back(req[0]);
list.push_back(req[1]);
return 2.0*bytes;
2017-07-29 18:06:53 +01:00
}
2017-08-19 18:18:50 +01:00
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
2017-08-25 09:25:54 +01:00
int nreq=waitall.size();
MPI_Waitall(nreq, &waitall[0], MPI_STATUSES_IGNORE);
2017-08-19 18:18:50 +01:00
};
2017-07-29 18:06:53 +01:00
double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir)
{
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
2017-08-19 18:18:50 +01:00
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
2017-08-25 09:25:54 +01:00
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
2017-07-29 18:06:53 +01:00
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
return 2.0*bytes;
}
}