1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/extras/Hadrons/Modules/MScalar/ScalarVP.cc

406 lines
14 KiB
C++
Raw Normal View History

2017-03-27 15:02:16 +01:00
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
2017-04-13 17:04:37 +01:00
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
2017-03-21 11:39:46 +00:00
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
2017-03-27 15:02:16 +01:00
* TScalarVP implementation *
2017-03-21 11:39:46 +00:00
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
2017-03-27 15:02:16 +01:00
TScalarVP::TScalarVP(const std::string name)
: Module<ScalarVPPar>(name)
2017-03-21 11:39:46 +00:00
{}
// dependencies/products ///////////////////////////////////////////////////////
2017-03-27 15:02:16 +01:00
std::vector<std::string> TScalarVP::getInput(void)
2017-03-21 11:39:46 +00:00
{
std::vector<std::string> in = {par().source, par().emField};
2017-03-21 11:39:46 +00:00
return in;
}
2017-03-27 15:02:16 +01:00
std::vector<std::string> TScalarVP::getOutput(void)
2017-03-21 11:39:46 +00:00
{
std::vector<std::string> out = {getName(), getName()+"_propQ",
getName()+"_propSun",
getName()+"_propTad"};
2017-03-21 11:39:46 +00:00
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
out.push_back(getName() + "_propQ_" + std::to_string(mu));
out.push_back(getName() + "_propSun_" + std::to_string(mu));
out.push_back(getName() + "_propTad_" + std::to_string(mu));
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
out.push_back(getName() + "_" + std::to_string(mu) + "_" + std::to_string(nu));
}
}
2017-03-21 11:39:46 +00:00
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
2017-03-27 15:02:16 +01:00
void TScalarVP::setup(void)
2017-03-21 11:39:46 +00:00
{
freeMomPropName_ = FREEMOMPROP(par().mass);
GFSrcName_ = "_" + getName() + "_DinvSrc";
prop0Name_ = getName() + "_prop0";
propQName_ = getName() + "_propQ";
propSunName_ = getName() + "_propSun";
propTadName_ = getName() + "_propTad";
phaseName_.clear();
muPropQName_.clear();
muPropSunName_.clear();
muPropTadName_.clear();
vpTensorName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
muPropSunName_.push_back(getName() + "_propSun_" + std::to_string(mu));
muPropTadName_.push_back(getName() + "_propTad_" + std::to_string(mu));
std::vector<std::string> vpTensorName_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
vpTensorName_.push_back(vpTensorName_mu);
}
2017-03-21 11:39:46 +00:00
if (!env().hasRegisteredObject(freeMomPropName_))
{
env().registerLattice<ScalarField>(freeMomPropName_);
}
if (!env().hasRegisteredObject(phaseName_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(phaseName_[mu]);
}
}
if (!env().hasRegisteredObject(GFSrcName_))
{
env().registerLattice<ScalarField>(GFSrcName_);
}
if (!env().hasRegisteredObject(prop0Name_))
{
env().registerLattice<ScalarField>(prop0Name_);
}
env().registerLattice<ScalarField>(propQName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropQName_[mu]);
}
env().registerLattice<ScalarField>(propSunName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropSunName_[mu]);
}
env().registerLattice<ScalarField>(propTadName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropTadName_[mu]);
}
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
env().registerLattice<ScalarField>(vpTensorName_[mu][nu]);
}
}
env().registerLattice<ScalarField>(getName());
2017-03-21 11:39:46 +00:00
}
// execution ///////////////////////////////////////////////////////////////////
2017-03-27 15:02:16 +01:00
void TScalarVP::execute(void)
2017-03-21 11:39:46 +00:00
{
// CACHING ANALYTIC EXPRESSIONS
ScalarField &source = *env().getObject<ScalarField>(par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
Real q = par().charge;
// cache momentum-space free scalar propagator
if (!env().hasCreatedObject(freeMomPropName_))
{
LOG(Message) << "Caching momentum space free scalar propagator"
<< " (mass= " << par().mass << ")..." << std::endl;
freeMomProp_ = env().createLattice<ScalarField>(freeMomPropName_);
Scalar<SIMPL>::MomentumSpacePropagator(*freeMomProp_, par().mass);
}
else
{
freeMomProp_ = env().getObject<ScalarField>(freeMomPropName_);
}
// cache phases
if (!env().hasCreatedObject(phaseName_[0]))
{
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Caching shift phases..." << std::endl;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
phase_.push_back(env().createLattice<ScalarField>(phaseName_[mu]));
LatticeCoordinate(*(phase_[mu]), mu);
*(phase_[mu]) = exp(ci*twoPiL*(*(phase_[mu])));
}
}
else
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phase_.push_back(env().getObject<ScalarField>(phaseName_[mu]));
}
}
// cache G*F*src
if (!env().hasCreatedObject(GFSrcName_))
{
GFSrc_ = env().createLattice<ScalarField>(GFSrcName_);
fft.FFT_all_dim(*GFSrc_, source, FFT::forward);
*GFSrc_ = (*freeMomProp_)*(*GFSrc_);
}
else
{
GFSrc_ = env().getObject<ScalarField>(GFSrcName_);
}
// cache position-space free scalar propagators
if (!env().hasCreatedObject(prop0Name_))
{
prop0_ = env().createLattice<ScalarField>(prop0Name_);
fft.FFT_all_dim(*prop0_, *GFSrc_, FFT::backward);
}
else
{
prop0_ = env().getObject<ScalarField>(prop0Name_);
}
2017-03-21 11:39:46 +00:00
// PROPAGATOR CALCULATION
// Propagator from unshifted source
ScalarField &propQ = *env().createLattice<ScalarField>(propQName_);
ScalarField &propSun = *env().createLattice<ScalarField>(propSunName_);
ScalarField &propTad = *env().createLattice<ScalarField>(propTadName_);
chargedProp(propQ, propSun, propTad, *GFSrc_, fft);
// Propagators from shifted sources
std::vector<ScalarField *> muPropQ_, muPropSun_, muPropTad_;
ScalarField buf(env().getGrid());
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muPropQ_.push_back(env().createLattice<ScalarField>(muPropQName_[mu]));
muPropSun_.push_back(env().createLattice<ScalarField>(muPropSunName_[mu]));
muPropTad_.push_back(env().createLattice<ScalarField>(muPropTadName_[mu]));
buf = adj(*phase_[mu])*(*GFSrc_);
chargedProp(*(muPropQ_[mu]), *(muPropSun_[mu]), *(muPropTad_[mu]),
buf, fft);
}
// CONTRACTIONS
vpTensor_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
std::vector<ScalarField *> vpTensor_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensor_mu.push_back(env().createLattice<ScalarField>(vpTensorName_[mu][nu]));
}
vpTensor_.push_back(vpTensor_mu);
}
ScalarField prop1(env().getGrid()), prop2(env().getGrid());
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField Amu(env().getGrid());
TComplex Anu0;
std::vector<int> coor0 = {0, 0, 0, 0};
// Position-space implementation
prop1 = *GFSrc_ + q*propQ + q*q*propSun + q*q*propTad;
fft.FFT_all_dim(prop1, prop1, FFT::backward);
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
peekSite(Anu0, peekLorentz(A, nu), coor0);
prop2 = adj(*phase_[nu])*(*GFSrc_) + q*(*(muPropQ_[nu]))
+ q*q*(*(muPropSun_[nu]) + *(muPropTad_[nu]));
fft.FFT_all_dim(prop2, prop2, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
<< std::endl;
Amu = peekLorentz(A, mu);
ScalarField &pi_mu_nu = *(vpTensor_[mu][nu]);
pi_mu_nu = adj(prop2)
* (1.0 + ci*q*Amu - 0.5*q*q*Amu*Amu)
* Cshift(prop1, mu, 1)
* (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
pi_mu_nu -= Cshift(adj(prop2), mu, 1)
* (1.0 - ci*q*Amu - 0.5*q*q*Amu*Amu)
* prop1
* (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
pi_mu_nu = 2.0*real(pi_mu_nu);
}
}
// // Momentum-space implementation
// ScalarField propbuf1(env().getGrid()), propbuf2(env().getGrid());
// prop1 = *GFSrc_ + q*propQ + q*q*propSun + q*q*propTad;
// for (unsigned int nu = 0; nu < env().getNd(); ++nu)
// {
// peekSite(Anu0, peekLorentz(A, nu), coor0);
// prop2 = adj(*phase_[nu])*(*GFSrc_) + q*(*(muPropQ_[nu]))
// + q*q*(*(muPropSun_[nu]) + *(muPropTad_[nu]));
// for (unsigned int mu = 0; mu < env().getNd(); ++mu)
// {
// LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
// << std::endl;
// Amu = peekLorentz(A, mu);
// ScalarField &pi_mu_nu = *(vpTensor_[mu][nu]);
// propbuf1 = (*phase_[mu])*prop1;
// fft.FFT_all_dim(propbuf1, propbuf1, FFT::backward);
// fft.FFT_all_dim(propbuf2, prop2, FFT::backward);
// pi_mu_nu = adj(propbuf2)
// * (1.0 + ci*q*Amu - 0.5*q*q*Amu*Amu)
// * propbuf1
// * (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
// propbuf2 = (*phase_[mu])*prop2;
// fft.FFT_all_dim(propbuf1, prop1, FFT::backward);
// fft.FFT_all_dim(propbuf2, propbuf2, FFT::backward);
// pi_mu_nu -= adj(propbuf2)
// * (1.0 - ci*q*Amu - 0.5*q*q*Amu*Amu)
// * propbuf1
// * (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
// pi_mu_nu = 2.0*real(pi_mu_nu);
// }
// }
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
std::string filename = par().output + "." +
std::to_string(env().getTrajectory());
LOG(Message) << "Saving zero-momentum projection to '"
<< filename << "'..." << std::endl;
CorrWriter writer(filename);
std::vector<TComplex> vecBuf;
std::vector<Complex> result;
write(writer, "charge", q);
write(writer, "mass", par().mass);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
sliceSum(*(vpTensor_[mu][nu]), vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
write(writer, "Pi_"+std::to_string(mu)+"_"+std::to_string(nu),
result);
}
}
}
}
// Calculate O(q) and O(q^2) terms of momentum-space charged propagator
void TScalarVP::chargedProp(ScalarField &prop_q, ScalarField &prop_sun,
ScalarField &prop_tad, ScalarField &GFSrc,
FFT &fft)
{
Complex ci(0.0,1.0);
ScalarField &G = *freeMomProp_;
ScalarField buf(env().getGrid());
LOG(Message) << "Computing charged scalar propagator"
<< " (mass= " << par().mass
<< ", charge= " << par().charge << ")..."
<< std::endl;
// -G*momD1*G*F*Src (momD1 = F*D1*Finv)
buf = GFSrc;
momD1(buf, fft);
buf = G*buf;
prop_q = -buf;
// G*momD1*G*momD1*G*F*Src
momD1(buf, fft);
prop_sun = G*buf;
// -G*momD2*G*F*Src (momD2 = F*D2*Finv)
buf = GFSrc;
momD2(buf, fft);
prop_tad = -G*buf;
2017-03-21 11:39:46 +00:00
}
void TScalarVP::momD1(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid());
Complex ci(0.0,1.0);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}
void TScalarVP::momD2(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid());
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*adj(*phase_[mu])*buf;
}
s = result;
}