1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak2

1042 lines
30 KiB
Plaintext
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
Author: Guido Cossu
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_IRBL_H
#define GRID_IRBL_H
#include <string.h> //memset
#define clog std::cout << GridLogMessage
namespace Grid {
/////////////////////////////////////////////////////////////
// Implicitly restarted block lanczos
/////////////////////////////////////////////////////////////
template<class Field>
class ImplicitlyRestartedBlockLanczos {
private:
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
int MaxIter; // Max iterations
int Nstop; // Number of evecs checked for convergence
int Nu; // Numbeer of vecs in the unit block
int Nk; // Number of converged sought
int Nm; // total number of vectors
int Nblock_k; // Nk/Nu
int Nblock_m; // Nm/Nu
RealD eresid;
IRLdiagonalisation diagonalisation;
////////////////////////////////////
// Embedded objects
////////////////////////////////////
SortEigen<Field> _sort;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
/////////////////////////
// Constructor
/////////////////////////
public:
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynomial
int _Nstop, // really sought vecs
int _Nu, // vecs in the unit block
int _Nk, // sought vecs
int _Nm, // total vecs
RealD _eresid, // resid in lmd deficit
int _MaxIter, // Max iterations
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
: _Linop(Linop), _poly(poly),
Nstop(_Nstop), Nu(_Nu), Nk(_Nk), Nm(_Nm),
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
//eresid(_eresid), MaxIter(10),
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation)
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
////////////////////////////////
// Helpers
////////////////////////////////
static RealD normalize(Field& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j],w);
w = w - ip * evec[j];
}
normalize(w);
}
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j*Nu],w);
w = w - ip * evec[j*Nu];
}
normalize(w);
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval,
std::vector<Field>& evec,
const std::vector<Field>& src, int& Nconv)
{
std::string fname = std::string(cname+"::calc()");
GridBase *grid = evec[0]._grid;
assert(grid == src[0]._grid);
assert( Nu = src.size() );
clog << std::string(74,'*') << std::endl;
clog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
clog << std::string(74,'*') << std::endl;
clog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
clog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
clog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
clog <<" -- size of eval = "<< eval.size() << std::endl;
clog <<" -- size of evec = "<< evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
clog << "Diagonalisation is Eigen "<< std::endl;
} else {
abort();
}
clog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<RealD> eval2(Nm);
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
std::vector<Field> f(Nu,grid);
std::vector<Field> f_copy(Nu,grid);
Field v(grid);
Nconv = 0;
RealD beta_k;
// set initial vector
for (int i=0; i<Nu; ++i) {
clog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
evec[i] = src[i];
orthogonalize(evec[i],evec,i);
clog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
}
// initial Nblock_k steps
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// restarting loop begins
int iter;
for(iter = 0; iter<MaxIter; ++iter){
clog <<" **********************"<< std::endl;
clog <<" Restart iteration = "<< iter << std::endl;
clog <<" **********************"<< std::endl;
// additional (Nblock_m - Nblock_k) steps
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
//for(int k=0; k<Nm; ++k) {
// clog << "ckpt A1: lme[" << k << "] = " << lme[0][k] << '\n';
//}
//for(int k=0; k<Nm; ++k) {
// clog << "ckpt A2: lmd[" << k << "] = " << lmd[0][k] << '\n';
//}
// getting eigenvalues
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
//for(int k=0; k<Nm; ++k){
// clog << "ckpt D " << '\n';
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
//}
// sorting
_sort.push(eval2,Nm);
//for(int k=0; k<Nm; ++k){
// clog << "ckpt E " << '\n';
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
//}
// Implicitly shifted QR transformations
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
for(int ip=Nk; ip<Nm; ++ip){
//clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << endl;
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt B2: M(" << ip << ")[" << i << "," << j << "] = " << BTDM(i,j) << '\n';
// }
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt B3: Q(" << ip << ")[" << i << "," << j << "] = " << Q(i,j) << '\n';
// }
//}
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
}
//BTDM = Q.adjoint()*(BTDM*Q);
//for (int i=0; i<Nm; ++i ) {
// for (int j=i+1; j<Nm; ++j ) {
// BTDM(i,j) = conj(BTDM(j,i));
// }
// //BTDM(i,i) = real(BTDM(i,i));
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt B2: M(" << Nm-Nk << ")[" << i << "," << j << "] = " << BTDM(i,j) << '\n';
// }
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt B3: Q(" << Nm-Nk << ")[" << i << "," << j << "] = " << Q(i,j) << '\n';
// }
//}
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
//for (int i=0; i<Nm; ++i) {
// clog << "ckpt C1: lme[" << i << "] = " << lme[0][i] << '\n';
//}
//for (int i=0; i<Nm; ++i) {
// clog << "ckpt C2: lmd[" << i << "] = " << lmd[0][i] << '\n';
//}
for(int i=0; i<Nk+Nu; ++i) B[i] = 0.0;
for(int j=0; j<Nk+Nu; ++j){
for(int k=0; k<Nm; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Q(k,j);
}
}
for(int i=0; i<Nk+Nu; ++i) {
evec[i] = B[i];
//clog << "ckpt F: norm2_evec[= " << i << "]" << norm2(evec[i]) << std::endl;
}
// residual vector
#if 0 // ypj[fixme] temporary to check a case when block has one vector
for ( int i=0; i<Nu; ++i) f_copy[i] = f[i];
for ( int i=0; i<Nu; ++i) {
f[i] = f_copy[0]*lme[0][Nm-Nu+i];
for ( int j=1; j<Nu; ++j) {
f[i] += f_copy[j]*lme[j][Nm-Nu+i];
}
//clog << "ckpt C (i= " << i << ")" << '\n';
//clog << "norm2(f) = " << norm2(f[i]) << std::endl;
}
// ypj[fixme] temporary to check a case when block has one vector
// Compressed vector f and beta(k2)
f[0] *= Q(Nm-1,Nk-1);
f[0] += lme[0][Nk-1] * evec[Nk]; // was commented out
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Q(Nm-1,Nk-1)<<std::endl;
beta_k = norm2(f[0]);
beta_k = sqrt(beta_k);
std::cout<< GridLogMessage<<"ckpt D2: beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[Nk] = betar * f[0];
lme[0][Nk-1] = beta_k;
#else
blockwiseStep(lmd,lme,evec,f,f_copy,Nblock_k-1);
// set initial vector
//for (int i=0; i<Nu; ++i) {
// orthogonalize(evec[i],evec,i);
//}
//// initial Nblock_k steps
//for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
#endif
// Convergence test
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
for(int k = 0; k<Nk; ++k) B[k]=0.0;
for(int j = 0; j<Nk; ++j){
for(int k = 0; k<Nk; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Qt(k,j);
}
}
//for (int k=0; k<Nk; ++k) {
// orthogonalize(B[k],B,k);
//}
//for (int i=0; i<Nk; ++i) {
// for (int j=0; j<Nk; ++j) {
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(i,j) << '\n';
// }
//}
//for (int i=0; i<Nk; ++i) {
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
//}
//for(int j=0; j<Nk; ++j) {
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
//}
Nconv = 0;
for(int i=0; i<Nk; ++i){
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
eval2[i] = vnum/vden;
v -= eval2[i]*B[i];
RealD vv = norm2(v);
std::cout.precision(13);
clog << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if( (vv<eresid*eresid) && (i == Nconv) ){
//if( (vv<eresid*eresid) ){
Iconv[Nconv] = i;
++Nconv;
}
} // i-loop end
clog <<" #modes converged: "<<Nconv<<std::endl;
if( Nconv>=Nstop ){
goto converged;
}
} // end of iter loop
clog <<"**************************************************************************"<< std::endl;
std::cout<< GridLogError << fname + " NOT converged.";
clog <<"**************************************************************************"<< std::endl;
abort();
converged:
// Sorting
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
}
_sort.push(eval,evec,Nconv);
clog <<"**************************************************************************"<< std::endl;
clog << fname + " CONVERGED ; Summary :\n";
clog <<"**************************************************************************"<< std::endl;
clog << " -- Iterations = "<< iter << "\n";
//clog << " -- beta(k) = "<< beta_k << "\n";
clog << " -- Nconv = "<< Nconv << "\n";
clog <<"**************************************************************************"<< std::endl;
}
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
std::vector<Field>& evec,
std::vector<Field>& w,
std::vector<Field>& w_copy,
int b)
{
const RealD tiny = 1.0e-20;
int Nu = w.size();
int Nm = evec.size();
assert( b < Nm/Nu );
// converts block index to full indicies for an interval [L,R)
int L = Nu*b;
int R = Nu*(b+1);
Real beta;
// 3. wk:=Avkβkv_{k1}
for (int k=L, u=0; k<R; ++k, ++u) {
_poly(_Linop,evec[k],w[u]);
}
if (b>0) {
for (int u=0; u<Nu; ++u) {
//for (int k=L-Nu; k<L; ++k) {
for (int k=L-Nu+u; k<L; ++k) {
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
//clog << "ckpt A (k= " << k+1 << ")" << '\n';
//clog << "lme = " << lme[u][k] << '\n';
//clog << "lme = " << conjugate(lme[u][k]) << '\n';
}
//clog << "norm(w) = " << norm2(w[u]) << std::endl;
}
}
// 4. αk:=(vk,wk)
//for (int u=0; u<Nu; ++u) {
// for (int k=L; k<R; ++k) {
// lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
// }
// lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
//}
for (int u=0; u<Nu; ++u) {
for (int k=L+u; k<R; ++k) {
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
lmd[k-L][u+L] = conjugate(lmd[u][k]); // force hermicity
}
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
}
//for (int u=0; u<Nu; ++u) {
// for (int k=L; k<L+u+1; ++k) {
// clog << "ckpt B: alphaT[" << u+L << "," << k << "] = " << lmd[u][k]
// << ", alphaT - conj(alphaT) = " << lmd[u][k] - conjugate(lmd[k-L][u+L]) << std::endl;
// }
//}
// 5. wk:=wkαkvk
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
w[u] = w[u] - evec[k]*lmd[u][k];
}
w_copy[u] = w[u];
}
// In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block.
// It results block version beta and orthonormal block basis.
// Here, QR decomposition is done by using Gram-Schmidt.
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
lme[u][k] = 0.0;
}
}
#if 0
beta = normalize(w[0]);
for (int u=1; u<Nu; ++u) {
//orthogonalize(w[u],w_copy,u);
orthogonalize(w[u],w,u);
}
#else
// re-orthogonalization for numerical stability
for (int u=0; u<Nu; ++u) {
orthogonalize(w[u],evec,R);
}
// QR part
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
#endif
for (int u=0; u<Nu; ++u) {
//for (int v=0; v<Nu; ++v) {
for (int v=u; v<Nu; ++v) {
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
}
lme[u][L+u] = real(lme[u][L+u]); // force diagonal to be real
}
//lme[0][L] = beta;
for (int u=0; u<Nu; ++u) {
clog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
for (int k=L+u; k<R; ++k) {
clog <<" In block "<< b << ",";
std::cout <<" beta[" << u << "," << k-L << "] = ";
std::cout << lme[u][k] << std::endl;
}
}
#if 0
// re-orthogonalization for numerical stability
if (b>0) {
for (int u=0; u<Nu; ++u) {
orthogonalize(w[u],evec,R);
}
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
}
//if (b>0) {
// orthogonalize_blockhead(w[0],evec,b,Nu);
// for (int u=1; u<Nu; ++u) {
// orthogonalize(w[u],w,u);
// }
//}
#endif
if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) {
evec[R+u] = w[u];
}
}
}
void diagonalize_Eigen(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt, // Nm x Nm
GridBase *grid)
{
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//std::cout << BlockTriDiag << std::endl;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
for (int i = 0; i < Nk; i++) {
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
}
}
}
void diagonalize(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
void unpackHermitBlockTriDiagMatToEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//clog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
M(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//clog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
}
void packHermitBlockTriDiagMatfromEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//clog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
lmd[u][k] = M(k,u+(k/Nu)*Nu);
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
}
}
//clog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
}
#if 0
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//clog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = M;
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) = M(i,i) - Dsh;
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
Q = QRD.householderQ();
for (int j=0; j<Nm-2*Nu; ++j ) {
for (int i=2*Nu+j; i<Nm; ++i ) {
Q(i,j) = 0.;
}
}
M = Q.adjoint()*(M*Q);
for (int i=0; i<Nm; ++i ) {
for (int j=i+Nu; j<Nm; ++j ) {
M(i,j) = conj(M(j,i));
}
}
for (int i=0; i<Nm; ++i ) {
M(i,i) = real(M(i,i));
}
Qprod *= Q;
//clog << "shiftedQRDecompEigen() end" << endl;
}
#endif
#if 1
// assume the input matrix M is a band matrix
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//clog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = M;
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) = M(i,i) - Dsh;
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
Q = QRD.householderQ();
R = QRD.matrixQR(); // upper triangular part is the R matrix.
// lower triangular part used to represent series
// of Q sequence.
// equivalent operation of Qprod *= Q
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm-2*(Nu+1); ++j) {
// for (int k=0; k<2*(Nu+1)+j; ++k) {
// M(i,j) += Qprod(i,k)*Q(k,j);
// }
// }
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=Nm-2*(Nu+1); j<Nm; ++j) {
// for (int k=0; k<Nm; ++k) {
// M(i,j) += Qprod(i,k)*Q(k,j);
// }
// }
//}
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm-(Nu+1); ++j) {
for (int k=0; k<Nu+1+j; ++k) {
//for (int j=0; j<Nm-2*Nu; ++j) {
// for (int k=0; k<j+2*Nu; ++k) {
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
}
}
}
for (int i=0; i<Nm; ++i) {
for (int j=Nm-(Nu+1); j<Nm; ++j) {
//for (int j=Nm-2*Nu; j<Nm; ++j) {
for (int k=0; k<Nm; ++k) {
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
}
}
}
//static int ntimes = 2;
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
// for (int i=ntimes*Nu+j; i<Nm; ++i) {
// Mtmp(i,j) = 0.0;
// }
//}
//ntimes++;
Qprod = Mtmp;
// equivalent operation of M = Q.adjoint()*(M*Q)
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
//
//for (int a=0, i=0, kmax=0; a<Nu+1; ++a) {
// for (int j=0; j<Nm-a; ++j) {
// i = j+a;
// kmax = (Nu+1)+j;
// if (kmax > Nm) kmax = Nm;
// for (int k=i; k<kmax; ++k) {
// M(i,j) += R(i,k)*Q(k,j);
// }
// M(j,i) = conj(M(i,j));
// }
//}
//for (int i=0; i<Nm; ++i) {
// M(i,i) = real(M(i,i));
//}
M = Q.adjoint()*(M*Q);
for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm; ++j) {
if (i==j) M(i,i) = real(M(i,i));
if (j>i) M(i,j) = conj(M(j,i));
if (i-j > Nu || j-i > Nu) M(i,j) = 0.;
}
}
//clog << "shiftedQRDecompEigen() end" << endl;
}
#endif
#if 0
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//clog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = M;
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) = M(i,i) - Dsh;
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
Q = QRD.householderQ();
M = Q.adjoint()*(M*Q);
for (int i=0; i<Nm; ++i ) {
for (int j=i+1; j<Nm; ++j ) {
M(i,j) = conj(M(j,i));
}
}
for (int i=0; i<Nm; ++i ) {
M(i,i) = real(M(i,i));
}
#if 1
Qprod *= Q;
#else
Mtmp = Qprod*Q;
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Mtmp);
Qprod = QRD2.householderQ();
Mtmp -= Qprod;
clog << "Frobenius norm ||Qprod(after) - Qprod|| = " << Mtmp.norm() << std::endl;
#endif
//clog << "shiftedQRDecompEigen() end" << endl;
}
#endif
#if 0
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//clog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
//Eigen::MatrixXcd Qtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = Qprod.adjoint()*(M*Qprod);
for (int i=0; i<Nm; ++i ) {
for (int j=i+1; j<Nm; ++j ) {
Mtmp(i,j) = Mtmp(j,i);
}
}
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) -= Dsh;
//Mtmp(i,i) = real(Mtmp(i,i)-Dsh);
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
//Qtmp = Qprod*QRD.householderQ();
//Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Qtmp);
//Qprod = QRD2.householderQ();
Qprod *= QRD.householderQ();
//ComplexD p;
//RealD r;
//r = 0.;
//for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,0))*Qprod(k,0));
//r = sqrt(r);
//for (int k=0; k<Nm; ++k) Qprod(k,0) /= r;
//
//for (int i=1; i<Nm; ++i) {
// for (int j=0; j<i; ++j) {
// p = 0.;
// for (int k=0; k<Nm; ++k) {
// p += conj(Qprod(k,j))*Qprod(k,i);
// }
// for (int k=0; k<Nm; ++k) {
// Qprod(k,i) -= p*Qprod(k,j);
// }
// }
// r = 0.;
// for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,i))*Qprod(k,i));
// r = sqrt(r);
// for (int k=0; k<Nm; ++k) Qprod(k,i) /= r;
//}
//clog << "shiftedQRDecompEigen() end" << endl;
}
#endif
void exampleQRDecompEigen(void)
{
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
clog << "matrix A before ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
clog << "matrix A after ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = 1" << std::endl;
Q = QRD.householderQ().setLength(1);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = 2" << std::endl;
Q = QRD.householderQ().setLength(2);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "matrixR" << std::endl;
R = QRD.matrixR();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
}
}
clog << std::endl;
clog << "rank = " << QRD.rank() << std::endl;
clog << "threshold = " << QRD.threshold() << std::endl;
clog << "matrixP" << std::endl;
P = QRD.colsPermutation();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
}
}
clog << std::endl;
clog << "QR decomposition without column pivoting" << std::endl;
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
clog << "matrix A before Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
clog << "HouseholderQ" << std::endl;
Q = QRDplain.householderQ();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "matrix A after Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
}
};
}
#undef clog
#endif