2017-12-04 04:55:22 +00:00
|
|
|
|
/*************************************************************************************
|
|
|
|
|
|
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
|
|
|
|
|
|
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
|
|
|
|
|
|
|
|
|
|
Copyright (C) 2015
|
|
|
|
|
|
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
|
Author: Chulwoo Jung
|
|
|
|
|
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
|
|
|
|
Author: Guido Cossu
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
|
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
|
|
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
|
|
|
*************************************************************************************/
|
|
|
|
|
/* END LEGAL */
|
|
|
|
|
#ifndef GRID_IRBL_H
|
|
|
|
|
#define GRID_IRBL_H
|
|
|
|
|
|
|
|
|
|
#include <string.h> //memset
|
|
|
|
|
|
|
|
|
|
#define clog std::cout << GridLogMessage
|
|
|
|
|
|
|
|
|
|
namespace Grid {
|
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
|
// Implicitly restarted block lanczos
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
|
template<class Field>
|
|
|
|
|
class ImplicitlyRestartedBlockLanczos {
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
|
|
|
|
|
int MaxIter; // Max iterations
|
|
|
|
|
int Nstop; // Number of evecs checked for convergence
|
|
|
|
|
int Nu; // Numbeer of vecs in the unit block
|
|
|
|
|
int Nk; // Number of converged sought
|
|
|
|
|
int Nm; // total number of vectors
|
|
|
|
|
int Nblock_k; // Nk/Nu
|
|
|
|
|
int Nblock_m; // Nm/Nu
|
|
|
|
|
RealD eresid;
|
|
|
|
|
IRLdiagonalisation diagonalisation;
|
|
|
|
|
////////////////////////////////////
|
|
|
|
|
// Embedded objects
|
|
|
|
|
////////////////////////////////////
|
|
|
|
|
SortEigen<Field> _sort;
|
|
|
|
|
LinearOperatorBase<Field> &_Linop;
|
|
|
|
|
OperatorFunction<Field> &_poly;
|
|
|
|
|
|
|
|
|
|
/////////////////////////
|
|
|
|
|
// Constructor
|
|
|
|
|
/////////////////////////
|
|
|
|
|
public:
|
|
|
|
|
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
|
|
|
|
|
OperatorFunction<Field> & poly, // polynomial
|
|
|
|
|
int _Nstop, // really sought vecs
|
|
|
|
|
int _Nu, // vecs in the unit block
|
|
|
|
|
int _Nk, // sought vecs
|
|
|
|
|
int _Nm, // total vecs
|
|
|
|
|
RealD _eresid, // resid in lmd deficit
|
|
|
|
|
int _MaxIter, // Max iterations
|
|
|
|
|
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
|
|
|
|
|
: _Linop(Linop), _poly(poly),
|
|
|
|
|
Nstop(_Nstop), Nu(_Nu), Nk(_Nk), Nm(_Nm),
|
|
|
|
|
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
|
2017-12-18 16:26:42 +00:00
|
|
|
|
//eresid(_eresid), MaxIter(10),
|
2017-12-04 04:55:22 +00:00
|
|
|
|
eresid(_eresid), MaxIter(_MaxIter),
|
|
|
|
|
diagonalisation(_diagonalisation)
|
|
|
|
|
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
|
|
|
|
|
|
|
|
|
////////////////////////////////
|
|
|
|
|
// Helpers
|
|
|
|
|
////////////////////////////////
|
|
|
|
|
static RealD normalize(Field& v)
|
|
|
|
|
{
|
|
|
|
|
RealD nn = norm2(v);
|
|
|
|
|
nn = sqrt(nn);
|
|
|
|
|
v = v * (1.0/nn);
|
|
|
|
|
return nn;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
|
|
|
|
{
|
|
|
|
|
typedef typename Field::scalar_type MyComplex;
|
|
|
|
|
MyComplex ip;
|
|
|
|
|
|
|
|
|
|
for(int j=0; j<k; ++j){
|
|
|
|
|
ip = innerProduct(evec[j],w);
|
|
|
|
|
w = w - ip * evec[j];
|
|
|
|
|
}
|
|
|
|
|
normalize(w);
|
|
|
|
|
}
|
2017-12-30 04:26:17 +00:00
|
|
|
|
|
|
|
|
|
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
|
|
|
|
|
{
|
|
|
|
|
typedef typename Field::scalar_type MyComplex;
|
|
|
|
|
MyComplex ip;
|
|
|
|
|
|
|
|
|
|
for(int j=0; j<k; ++j){
|
|
|
|
|
ip = innerProduct(evec[j*Nu],w);
|
|
|
|
|
w = w - ip * evec[j*Nu];
|
|
|
|
|
}
|
|
|
|
|
normalize(w);
|
|
|
|
|
}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
/* Rudy Arthur's thesis pp.137
|
|
|
|
|
------------------------
|
|
|
|
|
Require: M > K P = M − K †
|
|
|
|
|
Compute the factorization AVM = VM HM + fM eM
|
|
|
|
|
repeat
|
|
|
|
|
Q=I
|
|
|
|
|
for i = 1,...,P do
|
|
|
|
|
QiRi =HM −θiI Q = QQi
|
|
|
|
|
H M = Q †i H M Q i
|
|
|
|
|
end for
|
|
|
|
|
βK =HM(K+1,K) σK =Q(M,K)
|
|
|
|
|
r=vK+1βK +rσK
|
|
|
|
|
VK =VM(1:M)Q(1:M,1:K)
|
|
|
|
|
HK =HM(1:K,1:K)
|
|
|
|
|
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
|
|
|
|
until convergence
|
|
|
|
|
*/
|
|
|
|
|
void calc(std::vector<RealD>& eval,
|
|
|
|
|
std::vector<Field>& evec,
|
|
|
|
|
const std::vector<Field>& src, int& Nconv)
|
|
|
|
|
{
|
|
|
|
|
std::string fname = std::string(cname+"::calc()");
|
|
|
|
|
GridBase *grid = evec[0]._grid;
|
|
|
|
|
assert(grid == src[0]._grid);
|
|
|
|
|
assert( Nu = src.size() );
|
|
|
|
|
|
|
|
|
|
clog << std::string(74,'*') << std::endl;
|
|
|
|
|
clog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
|
|
|
|
clog << std::string(74,'*') << std::endl;
|
|
|
|
|
clog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
|
|
|
|
|
clog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
|
|
|
|
clog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
|
|
|
|
|
clog <<" -- size of eval = "<< eval.size() << std::endl;
|
|
|
|
|
clog <<" -- size of evec = "<< evec.size() << std::endl;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
2017-12-04 04:55:22 +00:00
|
|
|
|
clog << "Diagonalisation is Eigen "<< std::endl;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
} else {
|
|
|
|
|
abort();
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
clog << std::string(74,'*') << std::endl;
|
|
|
|
|
|
|
|
|
|
assert(Nm == evec.size() && Nm == eval.size());
|
|
|
|
|
|
|
|
|
|
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
|
|
|
|
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
|
|
|
|
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
|
|
|
|
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
|
|
|
|
std::vector<RealD> eval2(Nm);
|
|
|
|
|
|
|
|
|
|
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
std::vector<int> Iconv(Nm);
|
|
|
|
|
std::vector<Field> B(Nm,grid); // waste of space replicating
|
|
|
|
|
|
|
|
|
|
std::vector<Field> f(Nu,grid);
|
|
|
|
|
std::vector<Field> f_copy(Nu,grid);
|
|
|
|
|
Field v(grid);
|
|
|
|
|
|
|
|
|
|
Nconv = 0;
|
|
|
|
|
|
|
|
|
|
RealD beta_k;
|
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
// set initial vector
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for (int i=0; i<Nu; ++i) {
|
|
|
|
|
clog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
|
|
|
|
evec[i] = src[i];
|
|
|
|
|
orthogonalize(evec[i],evec,i);
|
|
|
|
|
clog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
// initial Nblock_k steps
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
|
|
|
|
// restarting loop begins
|
2017-12-04 04:55:22 +00:00
|
|
|
|
int iter;
|
|
|
|
|
for(iter = 0; iter<MaxIter; ++iter){
|
|
|
|
|
|
|
|
|
|
clog <<" **********************"<< std::endl;
|
|
|
|
|
clog <<" Restart iteration = "<< iter << std::endl;
|
|
|
|
|
clog <<" **********************"<< std::endl;
|
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
// additional (Nblock_m - Nblock_k) steps
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
|
|
|
|
|
|
|
|
|
// getting eigenvalues
|
|
|
|
|
for(int u=0; u<Nu; ++u){
|
|
|
|
|
for(int k=0; k<Nm; ++k){
|
|
|
|
|
lmd2[u][k] = lmd[u][k];
|
|
|
|
|
lme2[u][k] = lme[u][k];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
// sorting
|
|
|
|
|
_sort.push(eval2,Nm);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
// Implicitly shifted QR transformations
|
2017-12-18 16:26:42 +00:00
|
|
|
|
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
|
|
|
|
|
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
|
|
|
|
|
|
|
|
|
|
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
|
|
|
|
|
|
|
|
|
for(int ip=Nk; ip<Nm; ++ip){
|
|
|
|
|
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
|
|
|
|
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
2018-01-27 13:21:27 +00:00
|
|
|
|
|
|
|
|
|
//int k2 = Nk+Nu;
|
|
|
|
|
int k2 = Nk;
|
|
|
|
|
for(int i=0; i<k2; ++i) B[i] = 0.0;
|
|
|
|
|
for(int j=0; j<k2; ++j){
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for(int k=0; k<Nm; ++k){
|
|
|
|
|
B[j].checkerboard = evec[k].checkerboard;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
B[j] += evec[k]*Q(k,j);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
for(int i=0; i<k2; ++i) evec[i] = B[i];
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
// Convergence test
|
2017-12-18 16:26:42 +00:00
|
|
|
|
for(int u=0; u<Nu; ++u){
|
|
|
|
|
for(int k=0; k<Nm; ++k){
|
|
|
|
|
lmd2[u][k] = lmd[u][k];
|
|
|
|
|
lme2[u][k] = lme[u][k];
|
|
|
|
|
}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
|
|
|
|
for(int j = 0; j<Nk; ++j){
|
|
|
|
|
for(int k = 0; k<Nk; ++k){
|
|
|
|
|
B[j].checkerboard = evec[k].checkerboard;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
B[j] += evec[k]*Qt(k,j);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
Nconv = 0;
|
|
|
|
|
for(int i=0; i<Nk; ++i){
|
|
|
|
|
|
|
|
|
|
_Linop.HermOp(B[i],v);
|
|
|
|
|
|
|
|
|
|
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
|
|
|
|
RealD vden = norm2(B[i]);
|
|
|
|
|
eval2[i] = vnum/vden;
|
|
|
|
|
v -= eval2[i]*B[i];
|
|
|
|
|
RealD vv = norm2(v);
|
|
|
|
|
|
|
|
|
|
std::cout.precision(13);
|
|
|
|
|
clog << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
|
|
|
|
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
|
|
|
|
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
|
|
|
|
|
|
|
|
|
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
2017-12-18 16:26:42 +00:00
|
|
|
|
if( (vv<eresid*eresid) && (i == Nconv) ){
|
2017-12-04 04:55:22 +00:00
|
|
|
|
Iconv[Nconv] = i;
|
|
|
|
|
++Nconv;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // i-loop end
|
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
clog <<" #modes converged: "<<Nconv<<std::endl;
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
if( Nconv>=Nstop ){
|
|
|
|
|
goto converged;
|
|
|
|
|
}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
|
|
|
|
|
if ( iter < MaxIter-1 ) {
|
|
|
|
|
if ( Nu == 1 ) {
|
|
|
|
|
// reconstruct initial vector for additional pole space
|
|
|
|
|
blockwiseStep(lmd,lme,evec,f,f_copy,Nblock_k-1);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// update the first block
|
|
|
|
|
for (int i=0; i<Nu; ++i) {
|
|
|
|
|
//evec[i] = B[i];
|
|
|
|
|
orthogonalize(evec[i],evec,i);
|
|
|
|
|
}
|
|
|
|
|
// restart Nblock_k steps from the first block
|
|
|
|
|
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
} // end of iter loop
|
|
|
|
|
|
|
|
|
|
clog <<"**************************************************************************"<< std::endl;
|
|
|
|
|
std::cout<< GridLogError << fname + " NOT converged.";
|
|
|
|
|
clog <<"**************************************************************************"<< std::endl;
|
|
|
|
|
abort();
|
|
|
|
|
|
|
|
|
|
converged:
|
|
|
|
|
// Sorting
|
|
|
|
|
eval.resize(Nconv);
|
|
|
|
|
evec.resize(Nconv,grid);
|
|
|
|
|
for(int i=0; i<Nconv; ++i){
|
|
|
|
|
eval[i] = eval2[Iconv[i]];
|
|
|
|
|
evec[i] = B[Iconv[i]];
|
|
|
|
|
}
|
|
|
|
|
_sort.push(eval,evec,Nconv);
|
|
|
|
|
|
|
|
|
|
clog <<"**************************************************************************"<< std::endl;
|
|
|
|
|
clog << fname + " CONVERGED ; Summary :\n";
|
|
|
|
|
clog <<"**************************************************************************"<< std::endl;
|
|
|
|
|
clog << " -- Iterations = "<< iter << "\n";
|
2017-12-22 04:13:39 +00:00
|
|
|
|
//clog << " -- beta(k) = "<< beta_k << "\n";
|
2017-12-04 04:55:22 +00:00
|
|
|
|
clog << " -- Nconv = "<< Nconv << "\n";
|
|
|
|
|
clog <<"**************************************************************************"<< std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
/* Saad PP. 195
|
|
|
|
|
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
|
|
|
|
2. For k = 1,2,...,m Do:
|
|
|
|
|
3. wk:=Avk−βkv_{k−1}
|
|
|
|
|
4. αk:=(wk,vk) //
|
|
|
|
|
5. wk:=wk−αkvk // wk orthog vk
|
|
|
|
|
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
|
|
|
|
7. vk+1 := wk/βk+1
|
|
|
|
|
8. EndDo
|
|
|
|
|
*/
|
|
|
|
|
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lme,
|
|
|
|
|
std::vector<Field>& evec,
|
|
|
|
|
std::vector<Field>& w,
|
|
|
|
|
std::vector<Field>& w_copy,
|
|
|
|
|
int b)
|
|
|
|
|
{
|
|
|
|
|
const RealD tiny = 1.0e-20;
|
|
|
|
|
|
|
|
|
|
int Nu = w.size();
|
|
|
|
|
int Nm = evec.size();
|
|
|
|
|
assert( b < Nm/Nu );
|
|
|
|
|
|
|
|
|
|
// converts block index to full indicies for an interval [L,R)
|
|
|
|
|
int L = Nu*b;
|
|
|
|
|
int R = Nu*(b+1);
|
|
|
|
|
|
|
|
|
|
Real beta;
|
|
|
|
|
|
|
|
|
|
// 3. wk:=Avk−βkv_{k−1}
|
|
|
|
|
for (int k=L, u=0; k<R; ++k, ++u) {
|
|
|
|
|
_poly(_Linop,evec[k],w[u]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (b>0) {
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
2017-12-30 04:26:17 +00:00
|
|
|
|
//for (int k=L-Nu; k<L; ++k) {
|
|
|
|
|
for (int k=L-Nu+u; k<L; ++k) {
|
2017-12-04 04:55:22 +00:00
|
|
|
|
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 4. αk:=(vk,wk)
|
2017-12-30 04:26:17 +00:00
|
|
|
|
//for (int u=0; u<Nu; ++u) {
|
|
|
|
|
// for (int k=L; k<R; ++k) {
|
|
|
|
|
// lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
|
|
|
|
// }
|
|
|
|
|
// lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
|
|
|
|
//}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
2017-12-30 04:26:17 +00:00
|
|
|
|
for (int k=L+u; k<R; ++k) {
|
2017-12-04 04:55:22 +00:00
|
|
|
|
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
2017-12-30 04:26:17 +00:00
|
|
|
|
lmd[k-L][u+L] = conjugate(lmd[u][k]); // force hermicity
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 5. wk:=wk−αkvk
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
for (int k=L; k<R; ++k) {
|
|
|
|
|
w[u] = w[u] - evec[k]*lmd[u][k];
|
|
|
|
|
}
|
|
|
|
|
w_copy[u] = w[u];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// In block version, the steps 6 and 7 in Lanczos construction is
|
|
|
|
|
// replaced by the QR decomposition of new basis block.
|
|
|
|
|
// It results block version beta and orthonormal block basis.
|
2017-12-30 04:26:17 +00:00
|
|
|
|
// Here, QR decomposition is done by using Gram-Schmidt.
|
2017-12-04 04:55:22 +00:00
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
for (int k=L; k<R; ++k) {
|
|
|
|
|
lme[u][k] = 0.0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
#if 0
|
2017-12-04 04:55:22 +00:00
|
|
|
|
beta = normalize(w[0]);
|
|
|
|
|
for (int u=1; u<Nu; ++u) {
|
|
|
|
|
//orthogonalize(w[u],w_copy,u);
|
|
|
|
|
orthogonalize(w[u],w,u);
|
|
|
|
|
}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
#else
|
|
|
|
|
// re-orthogonalization for numerical stability
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
orthogonalize(w[u],evec,R);
|
|
|
|
|
}
|
|
|
|
|
// QR part
|
|
|
|
|
for (int u=1; u<Nu; ++u) {
|
|
|
|
|
orthogonalize(w[u],w,u);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
2017-12-30 04:26:17 +00:00
|
|
|
|
//for (int v=0; v<Nu; ++v) {
|
|
|
|
|
for (int v=u; v<Nu; ++v) {
|
2017-12-04 04:55:22 +00:00
|
|
|
|
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
|
|
|
|
|
}
|
2017-12-30 04:26:17 +00:00
|
|
|
|
lme[u][L+u] = real(lme[u][L+u]); // force diagonal to be real
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
2017-12-30 04:26:17 +00:00
|
|
|
|
//lme[0][L] = beta;
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
clog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
|
|
|
|
for (int k=L+u; k<R; ++k) {
|
|
|
|
|
clog <<" In block "<< b << ",";
|
|
|
|
|
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
|
|
|
|
std::cout << lme[u][k] << std::endl;
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
#if 0
|
2017-12-04 04:55:22 +00:00
|
|
|
|
// re-orthogonalization for numerical stability
|
2017-12-18 16:26:42 +00:00
|
|
|
|
if (b>0) {
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
orthogonalize(w[u],evec,R);
|
|
|
|
|
}
|
2017-12-30 04:26:17 +00:00
|
|
|
|
for (int u=1; u<Nu; ++u) {
|
|
|
|
|
orthogonalize(w[u],w,u);
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
}
|
2017-12-30 04:26:17 +00:00
|
|
|
|
//if (b>0) {
|
|
|
|
|
// orthogonalize_blockhead(w[0],evec,b,Nu);
|
|
|
|
|
// for (int u=1; u<Nu; ++u) {
|
|
|
|
|
// orthogonalize(w[u],w,u);
|
|
|
|
|
// }
|
|
|
|
|
//}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
#endif
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
if (b < Nm/Nu-1) {
|
|
|
|
|
for (int u=0; u<Nu; ++u) {
|
|
|
|
|
evec[R+u] = w[u];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
void diagonalize_Eigen(std::vector<RealD>& eval,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lmd,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lme,
|
2017-12-18 16:26:42 +00:00
|
|
|
|
int Nu, int Nk, int Nm,
|
2017-12-04 04:55:22 +00:00
|
|
|
|
Eigen::MatrixXcd & Qt, // Nm x Nm
|
|
|
|
|
GridBase *grid)
|
|
|
|
|
{
|
|
|
|
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
|
|
|
|
assert( Nk <= Nm );
|
|
|
|
|
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
|
|
|
|
|
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=0; k<Nk; ++k ) {
|
|
|
|
|
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=Nu; k<Nk; ++k ) {
|
2017-12-18 16:26:42 +00:00
|
|
|
|
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
//std::cout << BlockTriDiag << std::endl;
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
|
|
|
|
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < Nk; i++) {
|
|
|
|
|
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
|
|
|
|
|
}
|
|
|
|
|
for (int i = 0; i < Nk; i++) {
|
|
|
|
|
for (int j = 0; j < Nk; j++) {
|
2017-12-18 16:26:42 +00:00
|
|
|
|
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
|
|
|
|
|
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
|
|
|
|
|
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void diagonalize(std::vector<RealD>& eval,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lmd,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lme,
|
2017-12-18 16:26:42 +00:00
|
|
|
|
int Nu, int Nk, int Nm,
|
2017-12-04 04:55:22 +00:00
|
|
|
|
Eigen::MatrixXcd & Qt,
|
|
|
|
|
GridBase *grid)
|
|
|
|
|
{
|
|
|
|
|
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
|
|
|
|
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
2017-12-18 16:26:42 +00:00
|
|
|
|
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
} else {
|
|
|
|
|
assert(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
void unpackHermitBlockTriDiagMatToEigen(
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lmd,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lme,
|
|
|
|
|
int Nu, int Nb, int Nk, int Nm,
|
|
|
|
|
Eigen::MatrixXcd& M)
|
|
|
|
|
{
|
|
|
|
|
//clog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
|
|
|
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
|
|
|
|
assert( Nk <= Nm );
|
|
|
|
|
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
|
|
|
|
|
|
|
|
|
// rearrange
|
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=0; k<Nk; ++k ) {
|
|
|
|
|
M(k,u+(k/Nu)*Nu) = lmd[u][k];
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=Nu; k<Nk; ++k ) {
|
|
|
|
|
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
|
|
|
|
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
//clog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void packHermitBlockTriDiagMatfromEigen(
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lmd,
|
|
|
|
|
std::vector<std::vector<ComplexD>>& lme,
|
|
|
|
|
int Nu, int Nb, int Nk, int Nm,
|
|
|
|
|
Eigen::MatrixXcd& M)
|
|
|
|
|
{
|
|
|
|
|
//clog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
|
|
|
|
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
|
|
|
|
assert( Nk <= Nm );
|
|
|
|
|
|
|
|
|
|
// rearrange
|
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=0; k<Nk; ++k ) {
|
|
|
|
|
lmd[u][k] = M(k,u+(k/Nu)*Nu);
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
|
|
|
|
for ( int u=0; u<Nu; ++u ) {
|
|
|
|
|
for (int k=Nu; k<Nk; ++k ) {
|
|
|
|
|
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
|
|
|
|
}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
2017-12-18 16:26:42 +00:00
|
|
|
|
//clog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// assume the input matrix M is a band matrix
|
|
|
|
|
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
|
|
|
|
|
RealD Dsh,
|
|
|
|
|
Eigen::MatrixXcd& Qprod)
|
|
|
|
|
{
|
|
|
|
|
//clog << "shiftedQRDecompEigen() begin" << '\n';
|
|
|
|
|
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
|
|
|
|
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
|
|
|
|
|
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
|
|
|
|
|
|
|
|
|
Mtmp = M;
|
|
|
|
|
for (int i=0; i<Nm; ++i ) {
|
|
|
|
|
Mtmp(i,i) = M(i,i) - Dsh;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
|
|
|
|
Q = QRD.householderQ();
|
|
|
|
|
R = QRD.matrixQR(); // upper triangular part is the R matrix.
|
|
|
|
|
// lower triangular part used to represent series
|
|
|
|
|
// of Q sequence.
|
|
|
|
|
|
|
|
|
|
// equivalent operation of Qprod *= Q
|
|
|
|
|
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
|
|
|
|
|
|
|
|
|
|
//for (int i=0; i<Nm; ++i) {
|
|
|
|
|
// for (int j=0; j<Nm-2*(Nu+1); ++j) {
|
|
|
|
|
// for (int k=0; k<2*(Nu+1)+j; ++k) {
|
|
|
|
|
// M(i,j) += Qprod(i,k)*Q(k,j);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
//for (int i=0; i<Nm; ++i) {
|
|
|
|
|
// for (int j=Nm-2*(Nu+1); j<Nm; ++j) {
|
|
|
|
|
// for (int k=0; k<Nm; ++k) {
|
|
|
|
|
// M(i,j) += Qprod(i,k)*Q(k,j);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
|
|
|
|
|
|
|
|
|
for (int i=0; i<Nm; ++i) {
|
|
|
|
|
for (int j=0; j<Nm-(Nu+1); ++j) {
|
|
|
|
|
for (int k=0; k<Nu+1+j; ++k) {
|
|
|
|
|
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (int i=0; i<Nm; ++i) {
|
|
|
|
|
for (int j=Nm-(Nu+1); j<Nm; ++j) {
|
|
|
|
|
for (int k=0; k<Nm; ++k) {
|
|
|
|
|
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
|
|
|
|
|
//static int ntimes = 2;
|
|
|
|
|
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
|
|
|
|
|
// for (int i=ntimes*Nu+j; i<Nm; ++i) {
|
|
|
|
|
// Mtmp(i,j) = 0.0;
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
//ntimes++;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
|
|
|
|
Qprod = Mtmp;
|
|
|
|
|
|
|
|
|
|
// equivalent operation of M = Q.adjoint()*(M*Q)
|
2018-01-27 13:21:27 +00:00
|
|
|
|
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
for (int a=0, i=0, kmax=0; a<Nu+1; ++a) {
|
|
|
|
|
for (int j=0; j<Nm-a; ++j) {
|
|
|
|
|
i = j+a;
|
|
|
|
|
kmax = (Nu+1)+j;
|
|
|
|
|
if (kmax > Nm) kmax = Nm;
|
|
|
|
|
for (int k=i; k<kmax; ++k) {
|
|
|
|
|
Mtmp(i,j) += R(i,k)*Q(k,j);
|
|
|
|
|
}
|
|
|
|
|
Mtmp(j,i) = conj(Mtmp(i,j));
|
2017-12-18 16:26:42 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2017-12-04 04:55:22 +00:00
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
for (int i=0; i<Nm; ++i) {
|
|
|
|
|
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
}
|
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
M = Mtmp;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
|
2018-01-27 13:21:27 +00:00
|
|
|
|
//M = Q.adjoint()*(M*Q);
|
|
|
|
|
//for (int i=0; i<Nm; ++i) {
|
|
|
|
|
// for (int j=0; j<Nm; ++j) {
|
|
|
|
|
// if (i==j) M(i,i) = real(M(i,i));
|
|
|
|
|
// if (j>i) M(i,j) = conj(M(j,i));
|
|
|
|
|
// if (i-j > Nu || j-i > Nu) M(i,j) = 0.;
|
2017-12-18 16:26:42 +00:00
|
|
|
|
// }
|
|
|
|
|
//}
|
2018-01-27 13:21:27 +00:00
|
|
|
|
|
2017-12-18 16:26:42 +00:00
|
|
|
|
//clog << "shiftedQRDecompEigen() end" << endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void exampleQRDecompEigen(void)
|
|
|
|
|
{
|
|
|
|
|
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
|
|
|
|
|
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
|
|
|
|
|
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
|
|
|
|
|
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
|
|
|
|
|
|
|
|
|
|
A(0,0) = 12.0;
|
|
|
|
|
A(0,1) = -51.0;
|
|
|
|
|
A(0,2) = 4.0;
|
|
|
|
|
A(1,0) = 6.0;
|
|
|
|
|
A(1,1) = 167.0;
|
|
|
|
|
A(1,2) = -68.0;
|
|
|
|
|
A(2,0) = -4.0;
|
|
|
|
|
A(2,1) = 24.0;
|
|
|
|
|
A(2,2) = -41.0;
|
|
|
|
|
|
|
|
|
|
clog << "matrix A before ColPivHouseholder" << std::endl;
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
|
|
|
|
|
|
|
|
|
|
clog << "matrix A after ColPivHouseholder" << std::endl;
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
|
|
|
|
|
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "HouseholderQ with sequence lenth = 1" << std::endl;
|
|
|
|
|
Q = QRD.householderQ().setLength(1);
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "HouseholderQ with sequence lenth = 2" << std::endl;
|
|
|
|
|
Q = QRD.householderQ().setLength(2);
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "matrixR" << std::endl;
|
|
|
|
|
R = QRD.matrixR();
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "rank = " << QRD.rank() << std::endl;
|
|
|
|
|
clog << "threshold = " << QRD.threshold() << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "matrixP" << std::endl;
|
|
|
|
|
P = QRD.colsPermutation();
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
clog << "QR decomposition without column pivoting" << std::endl;
|
|
|
|
|
|
|
|
|
|
A(0,0) = 12.0;
|
|
|
|
|
A(0,1) = -51.0;
|
|
|
|
|
A(0,2) = 4.0;
|
|
|
|
|
A(1,0) = 6.0;
|
|
|
|
|
A(1,1) = 167.0;
|
|
|
|
|
A(1,2) = -68.0;
|
|
|
|
|
A(2,0) = -4.0;
|
|
|
|
|
A(2,1) = 24.0;
|
|
|
|
|
A(2,2) = -41.0;
|
|
|
|
|
|
|
|
|
|
clog << "matrix A before Householder" << std::endl;
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
|
|
|
|
|
|
|
|
|
|
clog << "HouseholderQ" << std::endl;
|
|
|
|
|
Q = QRDplain.householderQ();
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
|
|
|
|
|
|
|
|
|
clog << "matrix A after Householder" << std::endl;
|
|
|
|
|
for ( int i=0; i<3; i++ ) {
|
|
|
|
|
for ( int j=0; j<3; j++ ) {
|
|
|
|
|
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clog << std::endl;
|
2017-12-04 04:55:22 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
#undef clog
|
|
|
|
|
#endif
|