1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/extras/Hadrons/Application.cc

338 lines
10 KiB
C++
Raw Normal View History

2016-12-15 18:26:39 +00:00
/*************************************************************************************
2016-02-25 12:07:21 +00:00
Grid physics library, www.github.com/paboyle/Grid
2016-12-15 18:26:39 +00:00
Source file: extras/Hadrons/Application.cc
2016-02-25 12:07:21 +00:00
Copyright (C) 2015
2016-12-15 18:26:39 +00:00
Copyright (C) 2016
2016-02-25 12:07:21 +00:00
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2016-12-15 18:26:39 +00:00
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
2016-12-15 18:21:52 +00:00
/* END LEGAL */
2016-11-28 07:02:15 +00:00
#include <Grid/Hadrons/Application.hpp>
#include <Grid/Hadrons/GeneticScheduler.hpp>
using namespace Grid;
using namespace QCD;
using namespace Hadrons;
2016-05-07 21:26:56 +01:00
#define BIG_SEP "==============="
#define SEP "---------------"
/******************************************************************************
* Application implementation *
******************************************************************************/
2016-11-28 07:02:15 +00:00
// constructors ////////////////////////////////////////////////////////////////
Application::Application(void)
{
LOG(Message) << "Modules available:" << std::endl;
auto list = ModuleFactory::getInstance().getBuilderList();
for (auto &m: list)
{
LOG(Message) << " " << m << std::endl;
}
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
locVol_ = 1;
for (unsigned int d = 0; d < dim.size(); ++d)
{
loc[d] /= mpi[d];
locVol_ *= loc[d];
}
LOG(Message) << "Global lattice: " << dim << std::endl;
LOG(Message) << "MPI partition : " << mpi << std::endl;
LOG(Message) << "Local lattice : " << loc << std::endl;
}
2016-11-28 07:02:15 +00:00
Application::Application(const Application::GlobalPar &par)
: Application()
{
setPar(par);
}
Application::Application(const std::string parameterFileName)
: Application()
{
parameterFileName_ = parameterFileName;
}
// access //////////////////////////////////////////////////////////////////////
void Application::setPar(const Application::GlobalPar &par)
{
par_ = par;
env().setSeed(strToVec<int>(par_.seed));
2016-11-28 07:02:15 +00:00
}
const Application::GlobalPar & Application::getPar(void)
{
return par_;
}
// execute /////////////////////////////////////////////////////////////////////
void Application::run(void)
{
if (!parameterFileName_.empty() and (vm().getNModule() == 0))
2016-11-28 07:02:15 +00:00
{
parseParameterFile(parameterFileName_);
2016-11-28 07:02:15 +00:00
}
//vm().checkGraph();
env().printContent();
vm().printContent();
if (!scheduled_)
{
schedule();
}
printSchedule();
configLoop();
}
// parse parameter file ////////////////////////////////////////////////////////
class ObjectId: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ObjectId,
std::string, name,
std::string, type);
};
void Application::parseParameterFile(const std::string parameterFileName)
{
XmlReader reader(parameterFileName);
2016-12-05 02:44:36 +00:00
GlobalPar par;
ObjectId id;
LOG(Message) << "Building application from '" << parameterFileName << "'..." << std::endl;
2016-12-05 02:44:36 +00:00
read(reader, "parameters", par);
setPar(par);
if (!push(reader, "modules"))
{
HADRON_ERROR(Parsing, "Cannot open node 'modules' in parameter file '" + parameterFileName + "'");
}
if (!push(reader, "module"))
{
HADRON_ERROR(Parsing, "Cannot open node 'modules/module' in parameter file '" + parameterFileName + "'");
}
do
{
read(reader, "id", id);
vm().createModule(id.name, id.type, reader);
} while (reader.nextElement("module"));
pop(reader);
pop(reader);
}
void Application::saveParameterFile(const std::string parameterFileName)
{
XmlWriter writer(parameterFileName);
ObjectId id;
const unsigned int nMod = vm().getNModule();
LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl;
write(writer, "parameters", getPar());
push(writer, "modules");
for (unsigned int i = 0; i < nMod; ++i)
{
push(writer, "module");
id.name = vm().getModuleName(i);
id.type = vm().getModule(i)->getRegisteredName();
write(writer, "id", id);
vm().getModule(i)->saveParameters(writer, "options");
pop(writer);
}
pop(writer);
pop(writer);
}
// schedule computation ////////////////////////////////////////////////////////
#define MEM_MSG(size)\
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
#define DEFINE_MEMPEAK \
GeneticScheduler<unsigned int>::ObjFunc memPeak = \
[this](const std::vector<unsigned int> &program)\
{\
unsigned int memPeak;\
bool msg;\
\
msg = HadronsLogMessage.isActive();\
HadronsLogMessage.Active(false);\
vm().dryRun(true);\
memPeak = vm().executeProgram(program);\
vm().dryRun(false);\
env().freeAll();\
HadronsLogMessage.Active(msg);\
\
return memPeak;\
}
void Application::schedule(void)
{
DEFINE_MEMPEAK;
// build module dependency graph
LOG(Message) << "Building module graph..." << std::endl;
auto graph = vm().makeModuleGraph();
LOG(Debug) << "Module graph:" << std::endl;
LOG(Debug) << graph << std::endl;
auto con = graph.getConnectedComponents();
// constrained topological sort using a genetic algorithm
// LOG(Message) << "Scheduling computation..." << std::endl;
// LOG(Message) << " #module= " << graph.size() << std::endl;
// LOG(Message) << " population size= " << par_.genetic.popSize << std::endl;
// LOG(Message) << " max. generation= " << par_.genetic.maxGen << std::endl;
// LOG(Message) << " max. cst. generation= " << par_.genetic.maxCstGen << std::endl;
// LOG(Message) << " mutation rate= " << par_.genetic.mutationRate << std::endl;
// unsigned int k = 0, gen, prevPeak, nCstPeak = 0;
// std::random_device rd;
// GeneticScheduler<unsigned int>::Parameters par;
// par.popSize = par_.genetic.popSize;
// par.mutationRate = par_.genetic.mutationRate;
// par.seed = rd();
// memPeak_ = 0;
// CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed));
for (unsigned int i = 0; i < con.size(); ++i)
2015-12-02 19:33:34 +00:00
{
// GeneticScheduler<unsigned int> scheduler(con[i], memPeak, par);
// gen = 0;
// do
// {
// LOG(Debug) << "Generation " << gen << ":" << std::endl;
// scheduler.nextGeneration();
// if (gen != 0)
// {
// if (prevPeak == scheduler.getMinValue())
// {
// nCstPeak++;
// }
// else
// {
// nCstPeak = 0;
// }
// }
// prevPeak = scheduler.getMinValue();
// if (gen % 10 == 0)
// {
// LOG(Iterative) << "Generation " << gen << ": "
// << MEM_MSG(scheduler.getMinValue()) << std::endl;
// }
// gen++;
// } while ((gen < par_.genetic.maxGen)
// and (nCstPeak < par_.genetic.maxCstGen));
// auto &t = scheduler.getMinSchedule();
// if (scheduler.getMinValue() > memPeak_)
// {
// memPeak_ = scheduler.getMinValue();
// }
auto t = con[i].topoSort();
for (unsigned int j = 0; j < t.size(); ++j)
{
program_.push_back(t[j]);
2015-12-02 19:33:34 +00:00
}
}
scheduled_ = true;
}
void Application::saveSchedule(const std::string filename)
{
TextWriter writer(filename);
std::vector<std::string> program;
if (!scheduled_)
{
HADRON_ERROR(Definition, "Computation not scheduled");
}
LOG(Message) << "Saving current schedule to '" << filename << "'..."
<< std::endl;
for (auto address: program_)
{
program.push_back(vm().getModuleName(address));
}
write(writer, "schedule", program);
}
void Application::loadSchedule(const std::string filename)
{
DEFINE_MEMPEAK;
TextReader reader(filename);
std::vector<std::string> program;
LOG(Message) << "Loading schedule from '" << filename << "'..."
<< std::endl;
read(reader, "schedule", program);
program_.clear();
for (auto &name: program)
{
program_.push_back(vm().getModuleAddress(name));
}
scheduled_ = true;
memPeak_ = memPeak(program_);
}
void Application::printSchedule(void)
{
if (!scheduled_)
{
HADRON_ERROR(Definition, "Computation not scheduled");
}
LOG(Message) << "Schedule (memory peak: " << MEM_MSG(memPeak_) << "):"
<< std::endl;
for (unsigned int i = 0; i < program_.size(); ++i)
{
LOG(Message) << std::setw(4) << i + 1 << ": "
<< vm().getModuleName(program_[i]) << std::endl;
}
}
// loop on configurations //////////////////////////////////////////////////////
void Application::configLoop(void)
{
auto range = par_.trajCounter;
for (unsigned int t = range.start; t < range.end; t += range.step)
{
2016-05-07 21:26:56 +01:00
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl;
vm().setTrajectory(t);
vm().executeProgram(program_);
}
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
env().freeAll();
}
// memory profile //////////////////////////////////////////////////////////////
void Application::memoryProfile(void)
{
auto graph = vm().makeModuleGraph();
auto program = graph.topoSort();
bool msg;
msg = HadronsLogMessage.isActive();
HadronsLogMessage.Active(false);
HadronsLogMessage.Active(msg);
}