1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/lanczos/Test_dwf_compressed_lanczos_reorg.cc

566 lines
21 KiB
C++
Raw Normal View History

2017-10-25 23:48:47 +01:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_compressed_lanczos_reorg.cc
Copyright (C) 2017
Author: Leans heavily on Christoph Lehner's code
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/*
* Reimplement the badly named "multigrid" lanczos as compressed Lanczos using the features
* in Grid that were intended to be used to support blocked Aggregates, from
*/
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
struct LanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
int, Nk, /*Vecs in Lanczos seek converge*/
int, Nm, /*Total vecs in Lanczos include restart*/
RealD, resid, /*residual*/
int, MaxIt,
RealD, betastp, /* ? */
int, MinRes); // Must restart
};
struct LocalCoherenceLanczosParams : Serializable {
2017-10-25 23:48:47 +01:00
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(bool, doFine,
bool, doFineRead,
bool, doCoarse,
bool, doCoarseRead,
LocalCoherenceLanczosParams,
2017-10-25 23:48:47 +01:00
LanczosParams, FineParams,
LanczosParams, CoarseParams,
ChebyParams, Smoother,
2017-10-26 01:59:59 +01:00
RealD , coarse_relax_tol,
2017-10-25 23:48:47 +01:00
std::vector<int>, blockSize,
std::string, config,
std::vector < std::complex<double> >, omega,
RealD, mass,
RealD, M5);
2017-10-25 23:48:47 +01:00
};
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
ProjectedHermOp(LinearOperatorBase<FineField>& linop, Aggregation<Fobj,CComplex,nbasis> &aggregate) :
_Linop(linop),
_Aggregate(aggregate) { };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = _Aggregate.FineGrid;
FineField fin(FineGrid);
FineField fout(FineGrid);
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
OperatorFunction<FineField> & _poly;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,LinearOperatorBase<FineField>& linop,
Aggregation<Fobj,CComplex,nbasis> &aggregate) :
_poly(poly),
_Linop(linop),
_Aggregate(aggregate) { };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = _Aggregate.FineGrid;
FineField fin(FineGrid) ;fin.checkerboard =_Aggregate.checkerboard;
FineField fout(FineGrid);fout.checkerboard =_Aggregate.checkerboard;
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
2017-10-26 01:59:59 +01:00
RealD _coarse_relax_tol;
2017-10-25 23:48:47 +01:00
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop,
2017-10-26 01:59:59 +01:00
Aggregation<Fobj,CComplex,nbasis> &Aggregate,
RealD coarse_relax_tol=5.0e3)
: _smoother(smoother), _Linop(Linop),_Aggregate(Aggregate), _Poly(Poly), _coarse_relax_tol(coarse_relax_tol) { };
2017-10-25 23:48:47 +01:00
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
RealD eval_poly = eval;
// Apply operator
_Poly(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
GridBase *FineGrid = _Aggregate.FineGrid;
int checkerboard = _Aggregate.checkerboard;
FineField fB(FineGrid);fB.checkerboard =checkerboard;
FineField fv(FineGrid);fv.checkerboard =checkerboard;
_Aggregate.PromoteFromSubspace(B,fv);
_smoother(_Linop,fv,fB);
RealD eval_poly = eval;
_Linop.HermOp(fB,fv);
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
RealD vden = norm2(fB);
RealD vv0 = norm2(fv);
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
2017-10-26 01:59:59 +01:00
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
2017-10-25 23:48:47 +01:00
if( (vv<eresid*eresid) ) return 1;
return 0;
}
};
////////////////////////////////////////////
// Make serializable Lanczos params
////////////////////////////////////////////
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczos
2017-10-25 23:48:47 +01:00
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
private:
GridBase *_CoarseGrid;
GridBase *_FineGrid;
int _checkerboard;
LinearOperatorBase<FineField> & _FineOp;
// FIXME replace Aggregation with vector of fine; the code reuse is too small for
// the hassle and complexity of cross coupling.
Aggregation<Fobj,CComplex,nbasis> _Aggregate;
std::vector<RealD> evals_fine;
std::vector<RealD> evals_coarse;
std::vector<CoarseField> evec_coarse;
public:
LocalCoherenceLanczos(GridBase *FineGrid,
2017-10-25 23:48:47 +01:00
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_Aggregate(CoarseGrid,FineGrid,checkerboard),
_FineOp(FineOp),
_checkerboard(checkerboard)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
void Orthogonalise(void ) { _Aggregate.Orthogonalise(); }
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = ::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void fakeFine(void)
2017-10-25 23:48:47 +01:00
{
int Nk = nbasis;
_Aggregate.subspace.resize(Nk,_FineGrid);
_Aggregate.subspace[0]=1.0;
_Aggregate.subspace[0].checkerboard=_checkerboard;
normalise(_Aggregate.subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
_Aggregate.subspace[k].checkerboard=_checkerboard;
Op(_Aggregate.subspace[k-1],_Aggregate.subspace[k]);
normalise(_Aggregate.subspace[k]);
}
}
void checkpointFine(std::string evecs_file,std::string evals_file)
{
assert(_Aggregate.subspace.size()==nbasis);
emptyUserRecord record;
{
ScidacWriter WR;
WR.open(evecs_file);
for(int k=0;k<nbasis;k++) {
WR.writeScidacFieldRecord(_Aggregate.subspace[k],record);
}
WR.close();
}
{
XmlWriter WR(evals_file);
write(WR,"evals",evals_fine);
}
}
void checkpointFineRestore(std::string evecs_file,std::string evals_file)
{
evals_fine.resize(nbasis);
_Aggregate.subspace.resize(nbasis,_FineGrid);
{
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evals from "<<evals_file<<std::endl;
XmlReader RD(evals_file);
read(RD,"evals",evals_fine);
}
assert(evals_fine.size()==nbasis);
emptyUserRecord record;
{
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evecs from "<<evecs_file<<std::endl;
ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<nbasis;k++) {
_Aggregate.subspace[k].checkerboard=_checkerboard;
RD.readScidacFieldRecord(_Aggregate.subspace[k],record);
}
RD.close();
}
}
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
assert(_Aggregate.subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
assert(SimpleTester.ReconstructEval(k,resid,_Aggregate.subspace[k],evals_fine[k],1.0)==1);
}
}
2017-10-25 23:48:47 +01:00
void checkpointCoarse(std::string evecs_file,std::string evals_file)
{
int n = evec_coarse.size();
emptyUserRecord record;
{
ScidacWriter WR;
WR.open(evecs_file);
for(int k=0;k<n;k++) {
WR.writeScidacFieldRecord(evec_coarse[k],record);
}
WR.close();
}
{
XmlWriter WR(evals_file);
write(WR,"evals",evals_coarse);
}
}
void checkpointCoarseRestore(std::string evecs_file,std::string evals_file,int nvec)
2017-10-25 23:48:47 +01:00
{
std::cout << " resizing to " << nvec<< std::endl;
evals_coarse.resize(nvec);
evec_coarse.resize(nvec,_CoarseGrid);
2017-10-25 23:48:47 +01:00
{
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evals from "<<evals_file<<std::endl;
2017-10-25 23:48:47 +01:00
XmlReader RD(evals_file);
read(RD,"evals",evals_coarse);
2017-10-25 23:48:47 +01:00
}
std::cout << " sizes are " << evals_coarse.size()<<" / " <<nvec<< std::endl;
assert(evals_coarse.size()==nvec);
2017-10-25 23:48:47 +01:00
emptyUserRecord record;
{
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evecs from "<<evecs_file<<std::endl;
2017-10-25 23:48:47 +01:00
ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<nbasis;k++) {
// evec_coarse[k].checkerboard=_checkerboard; ???
RD.readScidacFieldRecord(evec_coarse[k],record);
2017-10-25 23:48:47 +01:00
}
RD.close();
}
}
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
assert(_Aggregate.subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,_Aggregate);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
for(int k=0;k<evec_coarse.size();k++){
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
}
}
2017-10-25 23:48:47 +01:00
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
evals_fine.resize(Nm);
_Aggregate.subspace.resize(Nm,_FineGrid);
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
int Nconv;
2017-10-26 01:59:59 +01:00
IRL.calc(evals_fine,_Aggregate.subspace,src,Nconv,false);
2017-10-25 23:48:47 +01:00
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
evals_fine.resize(nbasis);
_Aggregate.subspace.resize(nbasis,_FineGrid);
}
2017-10-26 01:59:59 +01:00
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
2017-10-25 23:48:47 +01:00
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,_Aggregate);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,_Aggregate);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
2017-10-26 01:59:59 +01:00
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
2017-10-25 23:48:47 +01:00
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
2017-10-26 01:59:59 +01:00
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
2017-10-25 23:48:47 +01:00
assert(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
2017-10-25 23:48:47 +01:00
for (int i=0;i<Nstop;i++){
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
};
int main (int argc, char ** argv) {
Grid_init(&argc,&argv);
GridLogIRL.TimingMode(1);
LocalCoherenceLanczosParams Params;
2017-10-25 23:48:47 +01:00
{
Params.omega.resize(10);
Params.blockSize.resize(5);
XmlWriter writer("Params_template.xml");
write(writer,"Params",Params);
std::cout << GridLogMessage << " Written Params_template.xml" <<std::endl;
}
{
XmlReader reader(std::string("./Params.xml"));
2017-10-25 23:48:47 +01:00
read(reader, "Params", Params);
}
int Ls = (int)Params.omega.size();
RealD mass = Params.mass;
RealD M5 = Params.M5;
std::vector<int> blockSize = Params.blockSize;
// Grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> fineLatt = GridDefaultLatt();
int dims=fineLatt.size();
assert(blockSize.size()==dims+1);
std::vector<int> coarseLatt(dims);
std::vector<int> coarseLatt5d ;
for (int d=0;d<coarseLatt.size();d++){
coarseLatt[d] = fineLatt[d]/blockSize[d]; assert(coarseLatt[d]*blockSize[d]==fineLatt[d]);
}
std::cout << GridLogMessage<< " 5d coarse lattice is ";
for (int i=0;i<coarseLatt.size();i++){
std::cout << coarseLatt[i]<<"x";
}
int cLs = Ls/blockSize[dims]; assert(cLs*blockSize[dims]==Ls);
std::cout << cLs<<std::endl;
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
GridRedBlackCartesian * CoarseGrid5rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid5);
// Gauge field
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
NerscIO::readConfiguration(Umu,header,Params.config);
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl;
// ZMobius EO Operator
ZMobiusFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, Params.omega,1.,0.);
SchurDiagTwoOperator<ZMobiusFermionR,LatticeFermion> HermOp(Ddwf);
// Eigenvector storage
LanczosParams fine =Params.FineParams;
LanczosParams coarse=Params.CoarseParams;
const int Ns1 = fine.Nstop; const int Ns2 = coarse.Nstop;
const int Nk1 = fine.Nk; const int Nk2 = coarse.Nk;
const int Nm1 = fine.Nm; const int Nm2 = coarse.Nm;
std::cout << GridLogMessage << "Keep " << fine.Nstop << " fine vectors" << std::endl;
std::cout << GridLogMessage << "Keep " << coarse.Nstop << " coarse vectors" << std::endl;
assert(Nm2 >= Nm1);
const int nbasis= 60;
assert(nbasis==Ns1);
LocalCoherenceLanczos<vSpinColourVector,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5rb,HermOp,Odd);
std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
if ( Params.doCoarse ) {
assert( (Params.doFine)||(Params.doFineRead));
}
2017-10-25 23:48:47 +01:00
if ( Params.doFine ) {
2017-10-25 23:48:47 +01:00
std::cout << GridLogMessage << "Performing fine grid IRL Nstop "<< Ns1 << " Nk "<<Nk1<<" Nm "<<Nm1<< std::endl;
_LocalCoherenceLanczos.calcFine(fine.Cheby,
2017-10-25 23:48:47 +01:00
fine.Nstop,fine.Nk,fine.Nm,
fine.resid,fine.MaxIt,
fine.betastp,fine.MinRes);
std::cout << GridLogIRL<<"Checkpointing Fine evecs"<<std::endl;
_LocalCoherenceLanczos.checkpointFine(std::string("evecs.scidac"),std::string("evals.xml"));
_LocalCoherenceLanczos.testFine(fine.resid*100.0); // Coarse check
}
if ( Params.doFineRead ) {
_LocalCoherenceLanczos.checkpointFineRestore(std::string("evecs.scidac"),std::string("evals.xml"));
_LocalCoherenceLanczos.testFine(fine.resid*100.0); // Coarse check
2017-10-25 23:48:47 +01:00
}
if ( Params.doCoarse ) {
std::cout << GridLogMessage << "Orthogonalising " << nbasis<<" Nm "<<Nm2<< std::endl;
_LocalCoherenceLanczos.Orthogonalise();
std::cout << GridLogMessage << "Performing coarse grid IRL Nstop "<< Ns2<< " Nk "<<Nk2<<" Nm "<<Nm2<< std::endl;
_LocalCoherenceLanczos.calcCoarse(coarse.Cheby,Params.Smoother,Params.coarse_relax_tol,
coarse.Nstop, coarse.Nk,coarse.Nm,
coarse.resid, coarse.MaxIt,
coarse.betastp,coarse.MinRes);
2017-10-25 23:48:47 +01:00
std::cout << GridLogIRL<<"Checkpointing coarse evecs"<<std::endl;
_LocalCoherenceLanczos.checkpointCoarse(std::string("evecs.coarse.scidac"),std::string("evals.coarse.xml"));
}
2017-10-25 23:48:47 +01:00
if ( Params.doCoarseRead ) {
// Verify we can reread ???
_LocalCoherenceLanczos.checkpointCoarseRestore(std::string("evecs.coarse.scidac"),std::string("evals.coarse.xml"),coarse.Nstop);
_LocalCoherenceLanczos.testCoarse(coarse.resid*100.0,Params.Smoother,Params.coarse_relax_tol); // Coarse check
}
2017-10-25 23:48:47 +01:00
Grid_finalize();
}