1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Eigen tensor serialisation fixes after Antonin's review

This commit is contained in:
Michael Marshall
2019-04-03 22:48:07 +01:00
parent 47f5b1e2b5
commit 00b4139c16
13 changed files with 686 additions and 519 deletions

View File

@ -29,7 +29,6 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/util/EigenUtil.h>
#include <typeinfo>
using namespace Grid;
@ -103,13 +102,22 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
bool good = Serializable::CompareMember(object, *buf);
if (!good) {
std::cout << " failure!" << std::endl;
if (EigenIO::is_tensor<O>::value)
dump_tensor(*buf);
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace
// So if Eigen ever defines these, we'll have a conflict and have to change this
namespace Eigen {
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
begin( ET & et ) { return reinterpret_cast<typename Grid::EigenIO::Traits<ET>::scalar_type *>(et.data()); }
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
end( ET & et ) { return begin(et) + et.size() * EigenIO::Traits<ET>::count; }
}
// Perform I/O tests on a range of tensor types
// Test coverage: scalars, complex and GridVectors in single, double and default precision
class TensorIO : public Serializable {
@ -133,14 +141,14 @@ class TensorIO : public Serializable {
void Init(unsigned short Precision)
{
SequentialInit(Perambulator1, Flag, Precision);
SequentialInit(Perambulator2, Flag, Precision);
SequentialInit(tensorR5, FlagR, Precision);
SequentialInit(tensorRank3, FlagF, Precision);
SequentialInit(tensor_9_4_2, FlagTS, Precision);
for( auto &s : Perambulator1 ) s = Flag;
for( auto &s : Perambulator2 ) s = Flag;
for( auto &s : tensorR5 ) s = FlagR;
for( auto &s : tensorRank3 ) s = FlagF;
for( auto &s : tensor_9_4_2 ) s = FlagTS;
for( auto &t : atensor_9_4_2 )
SequentialInit(t, FlagTS, Precision);
SequentialInit(MyLSCTensor, Flag, Precision);
for( auto &s : t ) s = FlagTS;
for( auto &s : MyLSCTensor ) s = Flag;
}
// Perform an I/O test for a single Eigen tensor (of any type)
@ -152,7 +160,7 @@ class TensorIO : public Serializable {
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)};
SequentialInit( * pTensor, Flag, Precision );
for( auto &s : * pTensor ) s = Flag;
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<W, R, T>(filename, * pTensor, MyTypeName, MyTypeName);
}
@ -191,41 +199,15 @@ public:
// Rank 1 tensor containing a single integer
using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
TestOne<WTR_, RDR_, TensorSingle>( TEST_PARAMS( TensorSingle ), 7 ); // lucky!
// Rather convoluted way of defining a single complex number
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>;
// Rather convoluted way of defining four complex numbers
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,2>, 6>;
using I = typename TensorSimple::Index; // NB: Never specified, so same for all my test tensors
// Try progressively more complicated tensors
TestOne<WTR_, RDR_, TensorSimple, I,I,I,I,I,I>( TEST_PARAMS( TensorSimple ), FlagTS, 1,1,1,1,1,1 );
TestOne<WTR_, RDR_, TensorRank3, I, I, I>( TEST_PARAMS( TensorRank3 ), FlagF, 6, 3, 2 );
TestOne<WTR_, RDR_, Tensor942>(TEST_PARAMS( Tensor942 ), FlagTS);
TestOne<WTR_, RDR_, LSCTensor>(TEST_PARAMS( LSCTensor ), Flag );
// Now see whether we can write a tensor in one memory order and read back in the other
{
TestOne<WTR_, RDR_, TensorR5>(TEST_PARAMS( TensorR5 ), FlagR);
std::cout << " Testing alternate memory order read ... ";
TensorR5Alt t2;
RDR_ reader(filename);
::Grid::read(reader, "TensorR5", t2);
bool good = true;
TensorR5 cf;
SequentialInit( cf, FlagR, Precision );
for_all( t2, [&](typename EigenIO::Traits<TensorR5Alt>::scalar_type c, I n,
const std::array<I, TensorR5Alt::NumIndices> &TensorIndex,
const std::array<int, EigenIO::Traits<TensorR5Alt>::Rank> &GridTensorIndex ){
Real &r = cf(TensorIndex);
if( c != r ){
good = false;
std::cout << "\nError: " << n << ": " << c << " != " << r;
}
} );
if (!good) {
std::cout << std::endl;
dump_tensor(t2,"t2");
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
TestOne<WTR_, RDR_, TensorR5>(TEST_PARAMS( TensorR5 ), FlagR);
// Now test a serialisable object containing a number of tensors
{
static const char MyTypeName[] = "TensorIO";
@ -247,10 +229,10 @@ public:
}
};
const Real TensorIO::FlagR {-1.001};
const Complex TensorIO::Flag {1,-3.1415927};
const ComplexF TensorIO::FlagF {1,-3.1415927};
const TensorIO::TestScalar TensorIO::FlagTS{1,-3.1415927};
const Real TensorIO::FlagR {1};
const Complex TensorIO::Flag {1,-1};
const ComplexF TensorIO::FlagF {1,-1};
const TensorIO::TestScalar TensorIO::FlagTS{1,-1};
const char * const TensorIO::pszFilePrefix = "tensor_";
template <typename T>