mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Improved the lancos
This commit is contained in:
		
							
								
								
									
										28
									
								
								TODO
									
									
									
									
									
								
							
							
						
						
									
										28
									
								
								TODO
									
									
									
									
									
								
							@@ -1,24 +1,28 @@
 | 
			
		||||
TODO:
 | 
			
		||||
---------------
 | 
			
		||||
 | 
			
		||||
Peter's work list:
 | 
			
		||||
1)- Precision conversion and sort out localConvert      <-- 
 | 
			
		||||
2)- Remove DenseVector, DenseMatrix; Use Eigen instead. <-- 
 | 
			
		||||
 | 
			
		||||
-- Profile CG, BlockCG, etc... Flop count/rate -- PARTIAL, time but no flop/s yet
 | 
			
		||||
-- Physical propagator interface
 | 
			
		||||
-- Conserved currents
 | 
			
		||||
-- GaugeFix into central location
 | 
			
		||||
-- Multigrid Wilson and DWF, compare to other Multigrid implementations
 | 
			
		||||
-- HDCR resume
 | 
			
		||||
Large item work list:
 | 
			
		||||
1)- Lanczos Remove DenseVector, DenseMatrix; Use Eigen instead. <-- 
 | 
			
		||||
2)- MultiRHS with spread out extra dim
 | 
			
		||||
3)- BG/Q port and check
 | 
			
		||||
4)- Precision conversion and sort out localConvert      <-- partial
 | 
			
		||||
  - Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
 | 
			
		||||
5)- Physical propagator interface
 | 
			
		||||
6)- Conserved currents
 | 
			
		||||
7)- Multigrid Wilson and DWF, compare to other Multigrid implementations
 | 
			
		||||
8)- HDCR resume
 | 
			
		||||
 | 
			
		||||
Recent DONE 
 | 
			
		||||
-- GaugeFix into central location                      <-- DONE
 | 
			
		||||
-- Scidac and Ildg metadata handling                   <-- DONE
 | 
			
		||||
-- Binary I/O MPI2 IO                                  <-- DONE
 | 
			
		||||
-- Binary I/O speed up & x-strips                      <-- DONE
 | 
			
		||||
-- Cut down the exterior overhead                      <-- DONE
 | 
			
		||||
-- Interior legs from SHM comms                        <-- DONE
 | 
			
		||||
-- Half-precision comms                                <-- DONE
 | 
			
		||||
-- Merge high precision reduction into develop        
 | 
			
		||||
-- multiRHS DWF; benchmark on Cori/BNL for comms elimination
 | 
			
		||||
-- Merge high precision reduction into develop         <-- DONE
 | 
			
		||||
-- BlockCG, BCGrQ                                      <-- DONE
 | 
			
		||||
-- multiRHS DWF; benchmark on Cori/BNL for comms elimination <-- DONE
 | 
			
		||||
   -- slice* linalg routines for multiRHS, BlockCG    
 | 
			
		||||
 | 
			
		||||
-----
 | 
			
		||||
 
 | 
			
		||||
@@ -1,137 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/DenseMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_DENSE_MATRIX_H
 | 
			
		||||
#define GRID_DENSE_MATRIX_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Matrix untils
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class T> using DenseVector = std::vector<T>;
 | 
			
		||||
template<class T> using DenseMatrix = DenseVector<DenseVector<T> >;
 | 
			
		||||
 | 
			
		||||
template<class T> void Size(DenseVector<T> & vec, int &N) 
 | 
			
		||||
{ 
 | 
			
		||||
  N= vec.size();
 | 
			
		||||
}
 | 
			
		||||
template<class T> void Size(DenseMatrix<T> & mat, int &N,int &M) 
 | 
			
		||||
{ 
 | 
			
		||||
  N= mat.size();
 | 
			
		||||
  M= mat[0].size();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class T> void SizeSquare(DenseMatrix<T> & mat, int &N) 
 | 
			
		||||
{ 
 | 
			
		||||
  int M; Size(mat,N,M);
 | 
			
		||||
  assert(N==M);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class T> void Resize(DenseVector<T > & mat, int N) { 
 | 
			
		||||
  mat.resize(N);
 | 
			
		||||
}
 | 
			
		||||
template<class T> void Resize(DenseMatrix<T > & mat, int N, int M) { 
 | 
			
		||||
  mat.resize(N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    mat[i].resize(M);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class T> void Fill(DenseMatrix<T> & mat, T&val) { 
 | 
			
		||||
  int N,M;
 | 
			
		||||
  Size(mat,N,M);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
  for(int j=0;j<M;j++){
 | 
			
		||||
    mat[i][j] = val;
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Transpose of a matrix **/
 | 
			
		||||
template<class T> DenseMatrix<T> Transpose(DenseMatrix<T> & mat){
 | 
			
		||||
  int N,M;
 | 
			
		||||
  Size(mat,N,M);
 | 
			
		||||
  DenseMatrix<T> C; Resize(C,M,N);
 | 
			
		||||
  for(int i=0;i<M;i++){
 | 
			
		||||
  for(int j=0;j<N;j++){
 | 
			
		||||
    C[i][j] = mat[j][i];
 | 
			
		||||
  }} 
 | 
			
		||||
  return C;
 | 
			
		||||
}
 | 
			
		||||
/** Set DenseMatrix to unit matrix **/
 | 
			
		||||
template<class T> void Unity(DenseMatrix<T> &A){
 | 
			
		||||
  int N;  SizeSquare(A,N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    for(int j=0;j<N;j++){
 | 
			
		||||
      if ( i==j ) A[i][j] = 1;
 | 
			
		||||
      else        A[i][j] = 0;
 | 
			
		||||
    } 
 | 
			
		||||
  } 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Add C * I to matrix **/
 | 
			
		||||
template<class T>
 | 
			
		||||
void PlusUnit(DenseMatrix<T> & A,T c){
 | 
			
		||||
  int dim;  SizeSquare(A,dim);
 | 
			
		||||
  for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;} 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** return the Hermitian conjugate of matrix **/
 | 
			
		||||
template<class T>
 | 
			
		||||
DenseMatrix<T> HermitianConj(DenseMatrix<T> &mat){
 | 
			
		||||
 | 
			
		||||
  int dim; SizeSquare(mat,dim);
 | 
			
		||||
 | 
			
		||||
  DenseMatrix<T> C; Resize(C,dim,dim);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<dim;i++){
 | 
			
		||||
    for(int j=0;j<dim;j++){
 | 
			
		||||
      C[i][j] = conj(mat[j][i]);
 | 
			
		||||
    } 
 | 
			
		||||
  } 
 | 
			
		||||
  return C;
 | 
			
		||||
}
 | 
			
		||||
/**Get a square submatrix**/
 | 
			
		||||
template <class T>
 | 
			
		||||
DenseMatrix<T> GetSubMtx(DenseMatrix<T> &A,int row_st, int row_end, int col_st, int col_end)
 | 
			
		||||
{
 | 
			
		||||
  DenseMatrix<T> H; Resize(H,row_end - row_st,col_end-col_st);
 | 
			
		||||
 | 
			
		||||
  for(int i = row_st; i<row_end; i++){
 | 
			
		||||
  for(int j = col_st; j<col_end; j++){
 | 
			
		||||
    H[i-row_st][j-col_st]=A[i][j];
 | 
			
		||||
  }}
 | 
			
		||||
  return H;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#include "Householder.h"
 | 
			
		||||
#include "Francis.h"
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -1,525 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/Francis.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef FRANCIS_H
 | 
			
		||||
#define FRANCIS_H
 | 
			
		||||
 | 
			
		||||
#include <cstdlib>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <stdexcept>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
//#include <timer.h>
 | 
			
		||||
//#include <lapacke.h>
 | 
			
		||||
//#include <Eigen/Dense>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template <class T> int SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
 | 
			
		||||
template <class T> int     Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
  Find the eigenvalues of an upper hessenberg matrix using the Francis QR algorithm.
 | 
			
		||||
H =
 | 
			
		||||
      x  x  x  x  x  x  x  x  x
 | 
			
		||||
      x  x  x  x  x  x  x  x  x
 | 
			
		||||
      0  x  x  x  x  x  x  x  x
 | 
			
		||||
      0  0  x  x  x  x  x  x  x
 | 
			
		||||
      0  0  0  x  x  x  x  x  x
 | 
			
		||||
      0  0  0  0  x  x  x  x  x
 | 
			
		||||
      0  0  0  0  0  x  x  x  x
 | 
			
		||||
      0  0  0  0  0  0  x  x  x
 | 
			
		||||
      0  0  0  0  0  0  0  x  x
 | 
			
		||||
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary.
 | 
			
		||||
**/
 | 
			
		||||
template <class T>
 | 
			
		||||
int QReigensystem(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
 | 
			
		||||
{
 | 
			
		||||
  DenseMatrix<T> H = Hin; 
 | 
			
		||||
 | 
			
		||||
  int N ; SizeSquare(H,N);
 | 
			
		||||
  int M = N;
 | 
			
		||||
 | 
			
		||||
  Fill(evals,0);
 | 
			
		||||
  Fill(evecs,0);
 | 
			
		||||
 | 
			
		||||
  T s,t,x=0,y=0,z=0;
 | 
			
		||||
  T u,d;
 | 
			
		||||
  T apd,amd,bc;
 | 
			
		||||
  DenseVector<T> p(N,0);
 | 
			
		||||
  T nrm = Norm(H);    ///DenseMatrix Norm
 | 
			
		||||
  int n, m;
 | 
			
		||||
  int e = 0;
 | 
			
		||||
  int it = 0;
 | 
			
		||||
  int tot_it = 0;
 | 
			
		||||
  int l = 0;
 | 
			
		||||
  int r = 0;
 | 
			
		||||
  DenseMatrix<T> P; Resize(P,N,N); Unity(P);
 | 
			
		||||
  DenseVector<int> trows(N,0);
 | 
			
		||||
 | 
			
		||||
  /// Check if the matrix is really hessenberg, if not abort
 | 
			
		||||
  RealD sth = 0;
 | 
			
		||||
  for(int j=0;j<N;j++){
 | 
			
		||||
    for(int i=j+2;i<N;i++){
 | 
			
		||||
      sth = abs(H[i][j]);
 | 
			
		||||
      if(sth > small){
 | 
			
		||||
	std::cout << "Non hessenberg H = " << sth << " > " << small << std::endl;
 | 
			
		||||
	exit(1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  do{
 | 
			
		||||
    std::cout << "Francis QR Step N = " << N << std::endl;
 | 
			
		||||
    /** Check for convergence
 | 
			
		||||
      x  x  x  x  x
 | 
			
		||||
      0  x  x  x  x
 | 
			
		||||
      0  0  x  x  x
 | 
			
		||||
      0  0  x  x  x
 | 
			
		||||
      0  0  0  0  x
 | 
			
		||||
      for this matrix l = 4
 | 
			
		||||
     **/
 | 
			
		||||
    do{
 | 
			
		||||
      l = Chop_subdiag(H,nrm,e,small);
 | 
			
		||||
      r = 0;    ///May have converged on more than one eval
 | 
			
		||||
      ///Single eval
 | 
			
		||||
      if(l == N-1){
 | 
			
		||||
        evals[e] = H[l][l];
 | 
			
		||||
        N--; e++; r++; it = 0;
 | 
			
		||||
      }
 | 
			
		||||
      ///RealD eval
 | 
			
		||||
      if(l == N-2){
 | 
			
		||||
        trows[l+1] = 1;    ///Needed for UTSolve
 | 
			
		||||
        apd = H[l][l] + H[l+1][l+1];
 | 
			
		||||
        amd = H[l][l] - H[l+1][l+1];
 | 
			
		||||
        bc =  (T)4.0*H[l+1][l]*H[l][l+1];
 | 
			
		||||
        evals[e]   = (T)0.5*( apd + sqrt(amd*amd + bc) );
 | 
			
		||||
        evals[e+1] = (T)0.5*( apd - sqrt(amd*amd + bc) );
 | 
			
		||||
        N-=2; e+=2; r++; it = 0;
 | 
			
		||||
      }
 | 
			
		||||
    } while(r>0);
 | 
			
		||||
 | 
			
		||||
    if(N ==0) break;
 | 
			
		||||
 | 
			
		||||
    DenseVector<T > ck; Resize(ck,3);
 | 
			
		||||
    DenseVector<T> v;   Resize(v,3);
 | 
			
		||||
 | 
			
		||||
    for(int m = N-3; m >= l; m--){
 | 
			
		||||
      ///Starting vector essentially random shift.
 | 
			
		||||
      if(it%10 == 0 && N >= 3 && it > 0){
 | 
			
		||||
        s = (T)1.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
 | 
			
		||||
        t = (T)0.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
 | 
			
		||||
        x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
 | 
			
		||||
        y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
 | 
			
		||||
        z = H[m+1][m]*H[m+2][m+1];
 | 
			
		||||
      }
 | 
			
		||||
      ///Starting vector implicit Q theorem
 | 
			
		||||
      else{
 | 
			
		||||
        s = (H[N-2][N-2] + H[N-1][N-1]);
 | 
			
		||||
        t = (H[N-2][N-2]*H[N-1][N-1] - H[N-2][N-1]*H[N-1][N-2]);
 | 
			
		||||
        x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
 | 
			
		||||
        y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
 | 
			
		||||
        z = H[m+1][m]*H[m+2][m+1];
 | 
			
		||||
      }
 | 
			
		||||
      ck[0] = x; ck[1] = y; ck[2] = z;
 | 
			
		||||
 | 
			
		||||
      if(m == l) break;
 | 
			
		||||
 | 
			
		||||
      /** Some stupid thing from numerical recipies, seems to work**/
 | 
			
		||||
      // PAB.. for heaven's sake quote page, purpose, evidence it works.
 | 
			
		||||
      //       what sort of comment is that!?!?!?
 | 
			
		||||
      u=abs(H[m][m-1])*(abs(y)+abs(z));
 | 
			
		||||
      d=abs(x)*(abs(H[m-1][m-1])+abs(H[m][m])+abs(H[m+1][m+1]));
 | 
			
		||||
      if ((T)abs(u+d) == (T)abs(d) ){
 | 
			
		||||
	l = m; break;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //if (u < small){l = m; break;}
 | 
			
		||||
    }
 | 
			
		||||
    if(it > 100000){
 | 
			
		||||
     std::cout << "QReigensystem: bugger it got stuck after 100000 iterations" << std::endl;
 | 
			
		||||
     std::cout << "got " << e << " evals " << l << " " << N << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
    normalize(ck);    ///Normalization cancels in PHP anyway
 | 
			
		||||
    T beta;
 | 
			
		||||
    Householder_vector<T >(ck, 0, 2, v, beta);
 | 
			
		||||
    Householder_mult<T >(H,v,beta,0,l,l+2,0);
 | 
			
		||||
    Householder_mult<T >(H,v,beta,0,l,l+2,1);
 | 
			
		||||
    ///Accumulate eigenvector
 | 
			
		||||
    Householder_mult<T >(P,v,beta,0,l,l+2,1);
 | 
			
		||||
    int sw = 0;      ///Are we on the last row?
 | 
			
		||||
    for(int k=l;k<N-2;k++){
 | 
			
		||||
      x = H[k+1][k];
 | 
			
		||||
      y = H[k+2][k];
 | 
			
		||||
      z = (T)0.0;
 | 
			
		||||
      if(k+3 <= N-1){
 | 
			
		||||
	z = H[k+3][k];
 | 
			
		||||
      } else{
 | 
			
		||||
	sw = 1; 
 | 
			
		||||
	v[2] = (T)0.0;
 | 
			
		||||
      }
 | 
			
		||||
      ck[0] = x; ck[1] = y; ck[2] = z;
 | 
			
		||||
      normalize(ck);
 | 
			
		||||
      Householder_vector<T >(ck, 0, 2-sw, v, beta);
 | 
			
		||||
      Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,0);
 | 
			
		||||
      Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,1);
 | 
			
		||||
      ///Accumulate eigenvector
 | 
			
		||||
      Householder_mult<T >(P,v, beta,0,k+1,k+3-sw,1);
 | 
			
		||||
    }
 | 
			
		||||
    it++;
 | 
			
		||||
    tot_it++;
 | 
			
		||||
  }while(N > 1);
 | 
			
		||||
  N = evals.size();
 | 
			
		||||
  ///Annoying - UT solves in reverse order;
 | 
			
		||||
  DenseVector<T> tmp; Resize(tmp,N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    tmp[i] = evals[N-i-1];
 | 
			
		||||
  } 
 | 
			
		||||
  evals = tmp;
 | 
			
		||||
  UTeigenvectors(H, trows, evals, evecs);
 | 
			
		||||
  for(int i=0;i<evals.size();i++){evecs[i] = P*evecs[i]; normalize(evecs[i]);}
 | 
			
		||||
  return tot_it;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
 | 
			
		||||
{
 | 
			
		||||
  /**
 | 
			
		||||
  Find the eigenvalues of an upper Hessenberg matrix using the Wilkinson QR algorithm.
 | 
			
		||||
  H =
 | 
			
		||||
  x  x  0  0  0  0
 | 
			
		||||
  x  x  x  0  0  0
 | 
			
		||||
  0  x  x  x  0  0
 | 
			
		||||
  0  0  x  x  x  0
 | 
			
		||||
  0  0  0  x  x  x
 | 
			
		||||
  0  0  0  0  x  x
 | 
			
		||||
  Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary.  **/
 | 
			
		||||
  return my_Wilkinson(Hin, evals, evecs, small, small);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small, RealD tol)
 | 
			
		||||
{
 | 
			
		||||
  int N; SizeSquare(Hin,N);
 | 
			
		||||
  int M = N;
 | 
			
		||||
 | 
			
		||||
  ///I don't want to modify the input but matricies must be passed by reference
 | 
			
		||||
  //Scale a matrix by its "norm"
 | 
			
		||||
  //RealD Hnorm = abs( Hin.LargestDiag() ); H =  H*(1.0/Hnorm);
 | 
			
		||||
  DenseMatrix<T> H;  H = Hin;
 | 
			
		||||
  
 | 
			
		||||
  RealD Hnorm = abs(Norm(Hin));
 | 
			
		||||
  H = H * (1.0 / Hnorm);
 | 
			
		||||
 | 
			
		||||
  // TODO use openmp and memset
 | 
			
		||||
  Fill(evals,0);
 | 
			
		||||
  Fill(evecs,0);
 | 
			
		||||
 | 
			
		||||
  T s, t, x = 0, y = 0, z = 0;
 | 
			
		||||
  T u, d;
 | 
			
		||||
  T apd, amd, bc;
 | 
			
		||||
  DenseVector<T> p; Resize(p,N); Fill(p,0);
 | 
			
		||||
 | 
			
		||||
  T nrm = Norm(H);    ///DenseMatrix Norm
 | 
			
		||||
  int n, m;
 | 
			
		||||
  int e = 0;
 | 
			
		||||
  int it = 0;
 | 
			
		||||
  int tot_it = 0;
 | 
			
		||||
  int l = 0;
 | 
			
		||||
  int r = 0;
 | 
			
		||||
  DenseMatrix<T> P; Resize(P,N,N);
 | 
			
		||||
  Unity(P);
 | 
			
		||||
  DenseVector<int> trows(N, 0);
 | 
			
		||||
  /// Check if the matrix is really symm tridiag
 | 
			
		||||
  RealD sth = 0;
 | 
			
		||||
  for(int j = 0; j < N; ++j)
 | 
			
		||||
  {
 | 
			
		||||
    for(int i = j + 2; i < N; ++i)
 | 
			
		||||
    {
 | 
			
		||||
      if(abs(H[i][j]) > tol || abs(H[j][i]) > tol)
 | 
			
		||||
      {
 | 
			
		||||
	std::cout << "Non Tridiagonal H(" << i << ","<< j << ") = |" << Real( real( H[j][i] ) ) << "| > " << tol << std::endl;
 | 
			
		||||
	std::cout << "Warning tridiagonalize and call again" << std::endl;
 | 
			
		||||
        // exit(1); // see what is going on
 | 
			
		||||
        //return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  do{
 | 
			
		||||
    do{
 | 
			
		||||
      //Jasper
 | 
			
		||||
      //Check if the subdiagonal term is small enough (<small)
 | 
			
		||||
      //if true then it is converged.
 | 
			
		||||
      //check start from H.dim - e - 1
 | 
			
		||||
      //How to deal with more than 2 are converged?
 | 
			
		||||
      //What if Chop_symm_subdiag return something int the middle?
 | 
			
		||||
      //--------------
 | 
			
		||||
      l = Chop_symm_subdiag(H,nrm, e, small);
 | 
			
		||||
      r = 0;    ///May have converged on more than one eval
 | 
			
		||||
      //Jasper
 | 
			
		||||
      //In this case
 | 
			
		||||
      // x  x  0  0  0  0
 | 
			
		||||
      // x  x  x  0  0  0
 | 
			
		||||
      // 0  x  x  x  0  0
 | 
			
		||||
      // 0  0  x  x  x  0
 | 
			
		||||
      // 0  0  0  x  x  0
 | 
			
		||||
      // 0  0  0  0  0  x  <- l
 | 
			
		||||
      //--------------
 | 
			
		||||
      ///Single eval
 | 
			
		||||
      if(l == N - 1)
 | 
			
		||||
      {
 | 
			
		||||
        evals[e] = H[l][l];
 | 
			
		||||
        N--;
 | 
			
		||||
        e++;
 | 
			
		||||
        r++;
 | 
			
		||||
        it = 0;
 | 
			
		||||
      }
 | 
			
		||||
      //Jasper
 | 
			
		||||
      // x  x  0  0  0  0
 | 
			
		||||
      // x  x  x  0  0  0
 | 
			
		||||
      // 0  x  x  x  0  0
 | 
			
		||||
      // 0  0  x  x  0  0
 | 
			
		||||
      // 0  0  0  0  x  x  <- l
 | 
			
		||||
      // 0  0  0  0  x  x
 | 
			
		||||
      //--------------
 | 
			
		||||
      ///RealD eval
 | 
			
		||||
      if(l == N - 2)
 | 
			
		||||
      {
 | 
			
		||||
        trows[l + 1] = 1;    ///Needed for UTSolve
 | 
			
		||||
        apd = H[l][l] + H[l + 1][ l + 1];
 | 
			
		||||
        amd = H[l][l] - H[l + 1][l + 1];
 | 
			
		||||
        bc =  (T) 4.0 * H[l + 1][l] * H[l][l + 1];
 | 
			
		||||
        evals[e] = (T) 0.5 * (apd + sqrt(amd * amd + bc));
 | 
			
		||||
        evals[e + 1] = (T) 0.5 * (apd - sqrt(amd * amd + bc));
 | 
			
		||||
        N -= 2;
 | 
			
		||||
        e += 2;
 | 
			
		||||
        r++;
 | 
			
		||||
        it = 0;
 | 
			
		||||
      }
 | 
			
		||||
    }while(r > 0);
 | 
			
		||||
    //Jasper
 | 
			
		||||
    //Already converged
 | 
			
		||||
    //--------------
 | 
			
		||||
    if(N == 0) break;
 | 
			
		||||
 | 
			
		||||
    DenseVector<T> ck,v; Resize(ck,2); Resize(v,2);
 | 
			
		||||
 | 
			
		||||
    for(int m = N - 3; m >= l; m--)
 | 
			
		||||
    {
 | 
			
		||||
      ///Starting vector essentially random shift.
 | 
			
		||||
      if(it%10 == 0 && N >= 3 && it > 0)
 | 
			
		||||
      {
 | 
			
		||||
        t = abs(H[N - 1][N - 2]) + abs(H[N - 2][N - 3]);
 | 
			
		||||
        x = H[m][m] - t;
 | 
			
		||||
        z = H[m + 1][m];
 | 
			
		||||
      } else {
 | 
			
		||||
      ///Starting vector implicit Q theorem
 | 
			
		||||
        d = (H[N - 2][N - 2] - H[N - 1][N - 1]) * (T) 0.5;
 | 
			
		||||
        t =  H[N - 1][N - 1] - H[N - 1][N - 2] * H[N - 1][N - 2] 
 | 
			
		||||
	  / (d + sign(d) * sqrt(d * d + H[N - 1][N - 2] * H[N - 1][N - 2]));
 | 
			
		||||
        x = H[m][m] - t;
 | 
			
		||||
        z = H[m + 1][m];
 | 
			
		||||
      }
 | 
			
		||||
      //Jasper
 | 
			
		||||
      //why it is here????
 | 
			
		||||
      //-----------------------
 | 
			
		||||
      if(m == l)
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      u = abs(H[m][m - 1]) * (abs(y) + abs(z));
 | 
			
		||||
      d = abs(x) * (abs(H[m - 1][m - 1]) + abs(H[m][m]) + abs(H[m + 1][m + 1]));
 | 
			
		||||
      if ((T)abs(u + d) == (T)abs(d))
 | 
			
		||||
      {
 | 
			
		||||
        l = m;
 | 
			
		||||
        break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //Jasper
 | 
			
		||||
    if(it > 1000000)
 | 
			
		||||
    {
 | 
			
		||||
      std::cout << "Wilkinson: bugger it got stuck after 100000 iterations" << std::endl;
 | 
			
		||||
      std::cout << "got " << e << " evals " << l << " " << N << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
    //
 | 
			
		||||
    T s, c;
 | 
			
		||||
    Givens_calc<T>(x, z, c, s);
 | 
			
		||||
    Givens_mult<T>(H, l, l + 1, c, -s, 0);
 | 
			
		||||
    Givens_mult<T>(H, l, l + 1, c,  s, 1);
 | 
			
		||||
    Givens_mult<T>(P, l, l + 1, c,  s, 1);
 | 
			
		||||
    //
 | 
			
		||||
    for(int k = l; k < N - 2; ++k)
 | 
			
		||||
    {
 | 
			
		||||
      x = H.A[k + 1][k];
 | 
			
		||||
      z = H.A[k + 2][k];
 | 
			
		||||
      Givens_calc<T>(x, z, c, s);
 | 
			
		||||
      Givens_mult<T>(H, k + 1, k + 2, c, -s, 0);
 | 
			
		||||
      Givens_mult<T>(H, k + 1, k + 2, c,  s, 1);
 | 
			
		||||
      Givens_mult<T>(P, k + 1, k + 2, c,  s, 1);
 | 
			
		||||
    }
 | 
			
		||||
    it++;
 | 
			
		||||
    tot_it++;
 | 
			
		||||
  }while(N > 1);
 | 
			
		||||
 | 
			
		||||
  N = evals.size();
 | 
			
		||||
  ///Annoying - UT solves in reverse order;
 | 
			
		||||
  DenseVector<T> tmp(N);
 | 
			
		||||
  for(int i = 0; i < N; ++i)
 | 
			
		||||
    tmp[i] = evals[N-i-1];
 | 
			
		||||
  evals = tmp;
 | 
			
		||||
  //
 | 
			
		||||
  UTeigenvectors(H, trows, evals, evecs);
 | 
			
		||||
  //UTSymmEigenvectors(H, trows, evals, evecs);
 | 
			
		||||
  for(int i = 0; i < evals.size(); ++i)
 | 
			
		||||
  {
 | 
			
		||||
    evecs[i] = P * evecs[i];
 | 
			
		||||
    normalize(evecs[i]);
 | 
			
		||||
    evals[i] = evals[i] * Hnorm;
 | 
			
		||||
  }
 | 
			
		||||
  // // FIXME this is to test
 | 
			
		||||
  // Hin.write("evecs3", evecs);
 | 
			
		||||
  // Hin.write("evals3", evals);
 | 
			
		||||
  // // check rsd
 | 
			
		||||
  // for(int i = 0; i < M; i++) {
 | 
			
		||||
  //   vector<T> Aevec = Hin * evecs[i];
 | 
			
		||||
  //   RealD norm2(0.);
 | 
			
		||||
  //   for(int j = 0; j < M; j++) {
 | 
			
		||||
  //     norm2 += (Aevec[j] - evals[i] * evecs[i][j]) * (Aevec[j] - evals[i] * evecs[i][j]);
 | 
			
		||||
  //   }
 | 
			
		||||
  // }
 | 
			
		||||
  return tot_it;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
void Hess(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
  turn a matrix A =
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  into
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  x  x  x  x  x
 | 
			
		||||
  0  x  x  x  x
 | 
			
		||||
  0  0  x  x  x
 | 
			
		||||
  0  0  0  x  x
 | 
			
		||||
  with householder rotations
 | 
			
		||||
  Slow.
 | 
			
		||||
  */
 | 
			
		||||
  int N ; SizeSquare(A,N);
 | 
			
		||||
  DenseVector<T > p; Resize(p,N); Fill(p,0);
 | 
			
		||||
 | 
			
		||||
  for(int k=start;k<N-2;k++){
 | 
			
		||||
    //cerr << "hess" << k << std::endl;
 | 
			
		||||
    DenseVector<T > ck,v; Resize(ck,N-k-1); Resize(v,N-k-1);
 | 
			
		||||
    for(int i=k+1;i<N;i++){ck[i-k-1] = A(i,k);}  ///kth column
 | 
			
		||||
    normalize(ck);    ///Normalization cancels in PHP anyway
 | 
			
		||||
    T beta;
 | 
			
		||||
    Householder_vector<T >(ck, 0, ck.size()-1, v, beta);  ///Householder vector
 | 
			
		||||
    Householder_mult<T>(A,v,beta,start,k+1,N-1,0);  ///A -> PA
 | 
			
		||||
    Householder_mult<T >(A,v,beta,start,k+1,N-1,1);  ///PA -> PAP^H
 | 
			
		||||
    ///Accumulate eigenvector
 | 
			
		||||
    Householder_mult<T >(Q,v,beta,start,k+1,N-1,1);  ///Q -> QP^H
 | 
			
		||||
  }
 | 
			
		||||
  /*for(int l=0;l<N-2;l++){
 | 
			
		||||
    for(int k=l+2;k<N;k++){
 | 
			
		||||
    A(0,k,l);
 | 
			
		||||
    }
 | 
			
		||||
    }*/
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
void Tri(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
 | 
			
		||||
///Tridiagonalize a matrix
 | 
			
		||||
  int N; SizeSquare(A,N);
 | 
			
		||||
  Hess(A,Q,start);
 | 
			
		||||
  /*for(int l=0;l<N-2;l++){
 | 
			
		||||
    for(int k=l+2;k<N;k++){
 | 
			
		||||
    A(0,l,k);
 | 
			
		||||
    }
 | 
			
		||||
    }*/
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
void ForceTridiagonal(DenseMatrix<T> &A){
 | 
			
		||||
///Tridiagonalize a matrix
 | 
			
		||||
  int N ; SizeSquare(A,N);
 | 
			
		||||
  for(int l=0;l<N-2;l++){
 | 
			
		||||
    for(int k=l+2;k<N;k++){
 | 
			
		||||
      A[l][k]=0;
 | 
			
		||||
      A[k][l]=0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int my_SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
 | 
			
		||||
  ///Solve a symmetric eigensystem, not necessarily in tridiagonal form
 | 
			
		||||
  int N; SizeSquare(Ain,N);
 | 
			
		||||
  DenseMatrix<T > A; A = Ain;
 | 
			
		||||
  DenseMatrix<T > Q; Resize(Q,N,N); Unity(Q);
 | 
			
		||||
  Tri(A,Q,0);
 | 
			
		||||
  int it = my_Wilkinson<T>(A, evals, evecs, small);
 | 
			
		||||
  for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
 | 
			
		||||
  return it;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int Wilkinson(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
 | 
			
		||||
  return my_Wilkinson(Ain, evals, evecs, small);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int SymmEigensystem(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
 | 
			
		||||
  return my_SymmEigensystem(Ain, evals, evecs, small);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
 | 
			
		||||
///Solve a general eigensystem, not necessarily in tridiagonal form
 | 
			
		||||
  int N = Ain.dim;
 | 
			
		||||
  DenseMatrix<T > A(N); A = Ain;
 | 
			
		||||
  DenseMatrix<T > Q(N);Q.Unity();
 | 
			
		||||
  Hess(A,Q,0);
 | 
			
		||||
  int it = QReigensystem<T>(A, evals, evecs, small);
 | 
			
		||||
  for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
 | 
			
		||||
  return it;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,242 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/Householder.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef HOUSEHOLDER_H
 | 
			
		||||
#define HOUSEHOLDER_H
 | 
			
		||||
 | 
			
		||||
#define TIMER(A) std::cout << GridLogMessage << __FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
 | 
			
		||||
#define ENTER()  std::cout << GridLogMessage << "ENTRY "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
 | 
			
		||||
#define LEAVE()  std::cout << GridLogMessage << "EXIT  "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
 | 
			
		||||
 | 
			
		||||
#include <cstdlib>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <stdexcept>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
/** Comparison function for finding the max element in a vector **/
 | 
			
		||||
template <class T> bool cf(T i, T j) { 
 | 
			
		||||
  return abs(i) < abs(j); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** 
 | 
			
		||||
	Calculate a real Givens angle 
 | 
			
		||||
 **/
 | 
			
		||||
template <class T> inline void Givens_calc(T y, T z, T &c, T &s){
 | 
			
		||||
 | 
			
		||||
  RealD mz = (RealD)abs(z);
 | 
			
		||||
  
 | 
			
		||||
  if(mz==0.0){
 | 
			
		||||
    c = 1; s = 0;
 | 
			
		||||
  }
 | 
			
		||||
  if(mz >= (RealD)abs(y)){
 | 
			
		||||
    T t = -y/z;
 | 
			
		||||
    s = (T)1.0 / sqrt ((T)1.0 + t * t);
 | 
			
		||||
    c = s * t;
 | 
			
		||||
  } else {
 | 
			
		||||
    T t = -z/y;
 | 
			
		||||
    c = (T)1.0 / sqrt ((T)1.0 + t * t);
 | 
			
		||||
    s = c * t;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T> inline void Givens_mult(DenseMatrix<T> &A,  int i, int k, T c, T s, int dir)
 | 
			
		||||
{
 | 
			
		||||
  int q ; SizeSquare(A,q);
 | 
			
		||||
 | 
			
		||||
  if(dir == 0){
 | 
			
		||||
    for(int j=0;j<q;j++){
 | 
			
		||||
      T nu = A[i][j];
 | 
			
		||||
      T w  = A[k][j];
 | 
			
		||||
      A[i][j] = (c*nu + s*w);
 | 
			
		||||
      A[k][j] = (-s*nu + c*w);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(dir == 1){
 | 
			
		||||
    for(int j=0;j<q;j++){
 | 
			
		||||
      T nu = A[j][i];
 | 
			
		||||
      T w  = A[j][k];
 | 
			
		||||
      A[j][i] = (c*nu - s*w);
 | 
			
		||||
      A[j][k] = (s*nu + c*w);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
	from input = x;
 | 
			
		||||
	Compute the complex Householder vector, v, such that
 | 
			
		||||
	P = (I - b v transpose(v) )
 | 
			
		||||
	b = 2/v.v
 | 
			
		||||
 | 
			
		||||
	P | x |    | x | k = 0
 | 
			
		||||
	| x |    | 0 | 
 | 
			
		||||
	| x | =  | 0 |
 | 
			
		||||
	| x |    | 0 | j = 3
 | 
			
		||||
	| x |	   | x |
 | 
			
		||||
 | 
			
		||||
	These are the "Unreduced" Householder vectors.
 | 
			
		||||
 | 
			
		||||
 **/
 | 
			
		||||
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, DenseVector<T> &v, T &beta)
 | 
			
		||||
{
 | 
			
		||||
  int N ; Size(input,N);
 | 
			
		||||
  T m = *max_element(input.begin() + k, input.begin() + j + 1, cf<T> );
 | 
			
		||||
 | 
			
		||||
  if(abs(m) > 0.0){
 | 
			
		||||
    T alpha = 0;
 | 
			
		||||
 | 
			
		||||
    for(int i=k; i<j+1; i++){
 | 
			
		||||
      v[i] = input[i]/m;
 | 
			
		||||
      alpha = alpha + v[i]*conj(v[i]);
 | 
			
		||||
    }
 | 
			
		||||
    alpha = sqrt(alpha);
 | 
			
		||||
    beta = (T)1.0/(alpha*(alpha + abs(v[k]) ));
 | 
			
		||||
 | 
			
		||||
    if(abs(v[k]) > 0.0)  v[k] = v[k] + (v[k]/abs(v[k]))*alpha;
 | 
			
		||||
    else                 v[k] = -alpha;
 | 
			
		||||
  } else{
 | 
			
		||||
    for(int i=k; i<j+1; i++){
 | 
			
		||||
      v[i] = 0.0;
 | 
			
		||||
    } 
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
	from input = x;
 | 
			
		||||
	Compute the complex Householder vector, v, such that
 | 
			
		||||
	P = (I - b v transpose(v) )
 | 
			
		||||
	b = 2/v.v
 | 
			
		||||
 | 
			
		||||
	Px = alpha*e_dir
 | 
			
		||||
 | 
			
		||||
	These are the "Unreduced" Householder vectors.
 | 
			
		||||
 | 
			
		||||
 **/
 | 
			
		||||
 | 
			
		||||
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, int dir, DenseVector<T> &v, T &beta)
 | 
			
		||||
{
 | 
			
		||||
  int N = input.size();
 | 
			
		||||
  T m = *max_element(input.begin() + k, input.begin() + j + 1, cf);
 | 
			
		||||
  
 | 
			
		||||
  if(abs(m) > 0.0){
 | 
			
		||||
    T alpha = 0;
 | 
			
		||||
 | 
			
		||||
    for(int i=k; i<j+1; i++){
 | 
			
		||||
      v[i] = input[i]/m;
 | 
			
		||||
      alpha = alpha + v[i]*conj(v[i]);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    alpha = sqrt(alpha);
 | 
			
		||||
    beta = 1.0/(alpha*(alpha + abs(v[dir]) ));
 | 
			
		||||
	
 | 
			
		||||
    if(abs(v[dir]) > 0.0) v[dir] = v[dir] + (v[dir]/abs(v[dir]))*alpha;
 | 
			
		||||
    else                  v[dir] = -alpha;
 | 
			
		||||
  }else{
 | 
			
		||||
    for(int i=k; i<j+1; i++){
 | 
			
		||||
      v[i] = 0.0;
 | 
			
		||||
    } 
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
	Compute the product PA if trans = 0
 | 
			
		||||
	AP if trans = 1
 | 
			
		||||
	P = (I - b v transpose(v) )
 | 
			
		||||
	b = 2/v.v
 | 
			
		||||
	start at element l of matrix A
 | 
			
		||||
	v is of length j - k + 1 of v are nonzero
 | 
			
		||||
 **/
 | 
			
		||||
 | 
			
		||||
template <class T> inline void Householder_mult(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int k, int j, int trans)
 | 
			
		||||
{
 | 
			
		||||
  int N ; SizeSquare(A,N);
 | 
			
		||||
 | 
			
		||||
  if(abs(beta) > 0.0){
 | 
			
		||||
    for(int p=l; p<N; p++){
 | 
			
		||||
      T s = 0;
 | 
			
		||||
      if(trans==0){
 | 
			
		||||
	for(int i=k;i<j+1;i++) s += conj(v[i-k])*A[i][p];
 | 
			
		||||
	s *= beta;
 | 
			
		||||
	for(int i=k;i<j+1;i++){ A[i][p] = A[i][p]-s*conj(v[i-k]);}
 | 
			
		||||
      } else {
 | 
			
		||||
	for(int i=k;i<j+1;i++){ s += conj(v[i-k])*A[p][i];}
 | 
			
		||||
	s *= beta;
 | 
			
		||||
	for(int i=k;i<j+1;i++){ A[p][i]=A[p][i]-s*conj(v[i-k]);}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
	Compute the product PA if trans = 0
 | 
			
		||||
	AP if trans = 1
 | 
			
		||||
	P = (I - b v transpose(v) )
 | 
			
		||||
	b = 2/v.v
 | 
			
		||||
	start at element l of matrix A
 | 
			
		||||
	v is of length j - k + 1 of v are nonzero
 | 
			
		||||
	A is tridiagonal
 | 
			
		||||
 **/
 | 
			
		||||
template <class T> inline void Householder_mult_tri(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int M, int k, int j, int trans)
 | 
			
		||||
{
 | 
			
		||||
  if(abs(beta) > 0.0){
 | 
			
		||||
 | 
			
		||||
    int N ; SizeSquare(A,N);
 | 
			
		||||
 | 
			
		||||
    DenseMatrix<T> tmp; Resize(tmp,N,N); Fill(tmp,0); 
 | 
			
		||||
 | 
			
		||||
    T s;
 | 
			
		||||
    for(int p=l; p<M; p++){
 | 
			
		||||
      s = 0;
 | 
			
		||||
      if(trans==0){
 | 
			
		||||
	for(int i=k;i<j+1;i++) s = s + conj(v[i-k])*A[i][p];
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=k;i<j+1;i++) s = s + v[i-k]*A[p][i];
 | 
			
		||||
      }
 | 
			
		||||
      s = beta*s;
 | 
			
		||||
      if(trans==0){
 | 
			
		||||
	for(int i=k;i<j+1;i++) tmp[i][p] = tmp(i,p) - s*v[i-k];
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=k;i<j+1;i++) tmp[p][i] = tmp[p][i] - s*conj(v[i-k]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=l; p<M; p++){
 | 
			
		||||
      if(trans==0){
 | 
			
		||||
	for(int i=k;i<j+1;i++) A[i][p] = A[i][p] + tmp[i][p];
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=k;i<j+1;i++) A[p][i] = A[p][i] + tmp[p][i];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -102,7 +102,7 @@ class ILDGHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    IldgReader _IldgReader;
 | 
			
		||||
    _IldgReader.open(config);
 | 
			
		||||
    _IldgReader.readConfiguration(config,U,header);  // format from the header
 | 
			
		||||
    _IldgReader.readConfiguration(U,header);  // format from the header
 | 
			
		||||
    _IldgReader.close();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Read ILDG Configuration from " << config
 | 
			
		||||
 
 | 
			
		||||
@@ -54,7 +54,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
  GridParallelRNG          RNG5rb(FrbGrid);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField Umu(UGrid); 
 | 
			
		||||
  SU3::TepidConfiguration(RNG4, Umu);
 | 
			
		||||
  SU3::HotConfiguration(RNG4, Umu);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeColourMatrix> U(4,UGrid);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user